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1 Executive summary 
This document reports on the second and final version of the research and development of techniques that facilitate 

the search and indexing1 of environmental nodes, as well as the acquisition of air quality-relevant data from the Web 

and from social media. The work described here builds upon the work reported on D3.1 and includes: a) the description 

of several new data collection methods that were implemented and integrated into the hackAIR platform, b) an in-

depth study of the performance of the image analysis techniques that were described in D3.1 that lead to an extension 

with significant improvements in terms of performance, c) the description and evaluation of an experimental 

framework for air quality estimation from Twitter data. With respect to data collection an important change is the 

extension of its coverage to the whole European continent instead of only big cities in the countries of the pilot studies 

(Germany and Norway). This change was motivated by the requirement of the data fusion module developed in WP4 

for geographically scattered measurements that include both urban and rural areas and the fact that the throughput 

rate of the image processing module was considerably improved and can now handle the expansion.  

Initially, we focused on improving data collection from Flickr which is the main source of social images after the 

shutdown of the Instagram API. Besides the geographical expansion, we also implemented several improvements 

(section 2.1.1) such as rejection of images with uncertain capture dates and better handling of the API’s responses. In 

addition, we studied the possibility of extending Flickr image collection to include non-geotagged images of which the 

geolocation is estimated based on the textual metadata of the image. To this end, experiments with a state-of-the-art 

geolocation estimation method were carried out (section 2.1.2) and it was found that for a significant percentage of 

non-geotagged Flickr images (27.3%), it is possible to infer their location with high precision. This is a very encouraging 

finding as it shows that a significantly larger number of Flickr images can be exploited for air quality estimation, 

compensating for the smaller number of images uploaded on Flickr compared to Instagram.  

In addition, we describe the implementation of methods for collection of images from public webcams (section 2.2). 

A characteristic of webcam images that makes them highly valuable for the data fusion model developed in WP4 is 

that their geolocation is fixed and known in advance and it is possible to collect images from them at regular intervals. 

Thus, we put significant focus on collecting images from a large number of webcams across the whole Europe. To this 

end, two very large public webcam image repositories were leveraged, AMOS and webcams.travel. Specialized image 

collectors were implemented for the two repositories, leading to a total of around 3.5K webcams in Europe. 

Besides the collection of image data that are analyzed and used as input for the air quality estimation models, we also 

implemented a collector of official environmental data (particulate matter PM10 and PM2.5) from ground stations 

(section 2.4) that builds upon the results of the empirical study of environmental web services that was conducted in 

D3.1. This data will be used as input to the visualization module developed in T5.2 and also serve as ground truth labels 

for the Twitter-based air quality estimation models that we describe in this report (section 4). The collector retrieves 

data from the OpenAQ platform which provides data from many air quality stations that cover most European 

countries, including the two countries of the pilots. In addition to the data collector, we also developed and present a 

web interface that visualizes the current air quality conditions in Europe as reflected by the data that we collect from 

OpenAQ.  

Another large part of our work (section 3) has focused on the detailed evaluation and finalization of the image analysis 

methods that we developed in D3.1, in order to turn them into an effective and efficient image analysis service for 

supporting the process of providing air quality estimations from images within the hackAIR platform. First, we 

performed a very realistic, air-quality oriented evaluation (section 3.1) of the two alternative sky localization methods: 

a) the one based on deep learning techniques (FCN approach) and b) the one based on heuristic rules that were 

provided by air quality estimation experts (heuristic approach). To this end, we created a dataset that contain the sky 

                                                           
1 Discovery of environmental notes was mainly addressed in D3.1. 
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masks extracted from a random set of Flickr and webcam images, and asked air quality experts to evaluate the 

performance of the two sky localization methods. Based on this evaluation, a number of important conclusions were 

drawn such as the complementarity of the two approaches and the difficulty in rejecting images where the sky is 

covered by cirrus clouds. Motivated by the complementarity of the two approaches, a new approach that combines 

them was proposed and evaluated, leading to significantly better results than either of the two approaches alone. 

Moreover, we performed (section 3.2) a comprehensive study of the impact of various commonly applied image 

transformations and filters on the ratios (R/G and G/B) that we computed from the sky regions of the images and sent 

as input to the image-based air quality estimation models. The results showed that the results of the image analysis 

were very robust against most transformations, except for the most intense ones. 

We also provide a detailed description (section 3.3) of the architecture of the image analysis service as well as the 

effectiveness of its three main components: a) sky concept detection, b) FCN-based sky localization, c) refinement of 

the FCN-based mask with the heuristic approach and calculation of the R/G and G/B ratios. Importantly, statistics 

regarding the results of the image analysis service on the collected images are given (section 3.4), including the 

numbers of sky-depicting and usable sky images collected daily from each data source as well as from all available data 

sources and the number of usable sky images collected from the countries of the pilots. Moreover, we present a web 

interface that we developed for the visualization of the data collection and image analysis results (section 3.5). 

Finally, we present an experimental line of work that investigates the feasibility of making air quality estimations for 

areas (cities) without official air quality stations based on Twitter activity. Such estimations can be potentially useful in 

cases where e.g. due to high cloud coverage, there is not enough data to make image-based air quality estimations. 

For this purpose, a Twitter data collection framework is implemented that focuses on collecting air quality-related 

Twitter posts that are posted in specific cities. Text analysis machine learning techniques are then utilized that try to 

learn accurate mappings between the current air quality conditions and statistical attributes of the Twitter posts. Five 

cities in the UK are used as a case study and a transfer learning framework is developed where using data from one or 

more nearby cities for training the estimation models, we try to make estimations for another city that is assumed to 

not have official ground station measurements. A series of experiments are conducted using state-of-the-art machine 

learning techniques and some promising results are obtained. 

With the completion of D3.2, considerable progress has been achieved and we consider that the goals of WP3 have 

been fulfilled. The developed and tested components have been delivered and will be integrated in the hackAIR 

platform, and are expected to be continuously refined (within WP5 and WP7) throughout the second period of the 

project through the feedback acquired from the pilot studies, as well as by carrying out further lab experiments and 

implementing appropriate extensions to improve their quality and resilience.  
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2 Environmental and Social Node Indexing and Data Collection 

2.1 Social Image Collection Improvements and Extensions 

2.1.1 Flickr Collector Improvements 

In this section, we report various updates and improvements that were implemented during the reporting period on 

the Flickr collector (of which the first version is described in D3.1). In short, the purpose of the Flickr collector is to 

periodically call the Flickr API in order to retrieve the URLs and necessary metadata (i.e. geolocation and timestamp) 

of images captured (and uploaded) recently (within the last 24 hours) around the locations of interest. The metadata 

of each image is stored in a MongoDB and the URLs are used to download the images and store them until image 

analysis for supporting air quality estimation is performed. 

In the first version of the collector, the flickr.photos.search endpoint was used in order to collect images within a radius 

of 16 km around the center of 34 European cities located mainly in Germany, Norway and Greece. This was achieved 

by setting the lat (latitude) and lon (longitude) parameters of the endpoint and submitting one request per city every 

24 hours using appropriate values for the minimum and maximum date taken parameters in order to retrieve only 

photos taken within the last 24 hours. Compared to that first version of the collector, the updated version includes the 

following updates and improvements: 

Geographical coverage extension: We studied the feasibility of extending the geographical coverage of the Flickr 

collector to the whole Europe instead of specific European cities. This change was motivated by the fact that the data 

fusion module being developed in WP4 works better when the air quality measurements/estimations used as inputs 

are geographically scattered and include both urban and rural areas. To this end, an alternative way of performing 

geographical queries using the flickr.photos.search API method was employed, i.e. using the woe_id parameter. This 

parameter allows geographical queries based on a WOEID2 (Where on Earth Identifier), a 32-bit identifier that uniquely 

identifies spatial entities and is assigned by Flickr to all geotagged images. Using this approach, extending the coverage 

to the whole Europe consists of replacing the multiple city-oriented requests with a single request where the lat/lon 

parameters have been replaced by the woe_id parameter set to the WOEID of Europe (24865675). Note that this 

approach was preferred over using a bounding box query (bbox parameter) because Europe’s bounding box includes 

non-European countries (e.g. Turkey). 

Taken date validation: In order to retrieve only photos taken within the last 24 hours, the min/max_date_taken 

parameters of the flickr.photos.search endpoint are used. These parameters operate on Flickr’s ‘taken’ date field which 

is extracted, if available, from the image’s Exif metadata. However, the value of this field is not always accurate as 

explained in Flickr API’s documentation3: 

 Flickr automatically sets the taken date to the time of upload when the taken date is not available in the Exif. 

Thus, we reject all images with a taken date equal to the upload date. 

 When the taken date of the image is not specified with enough detail Flickr auto-completes the missing 

information with default values so that all taken dates are specified up to the second (e.g., a taken date of “2016-

11-25” will be automatically transformed to “2016-11-25 00:00:00”). Fortunately, it is possible to identify such cases 

by taking taken date granularities into account (information provided in the datetakengranularity field of Flickr API’s 

response). Flickr assigns a ‘granularity’ – the accuracy to which the date is known to be true – to taken dates. 

Currently, there are four taken date granularities (0, 4, 6, 8) on Flickr, only the finest of which (0) provides sufficient 

                                                           
2 https://en.wikipedia.org/wiki/WOEID  

3 https://www.flickr.com/services/api/misc.dates.html  

https://en.wikipedia.org/wiki/WOEID
https://www.flickr.com/services/api/misc.dates.html
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detail (up to the second) to be usable for our purposes. Thus, all images with a taken date granularity > 0 are 

rejected. 

Improved API response management: After expanding the area of interest to the whole Europe, each API request now 

returns a much larger number of results compared to the city-oriented queries. An implication of this is that some 

queries return more than 4,000 results, bringing up an idiosyncrasy of the Flickr API, i.e. whenever the number of 

results for any given search query is larger than 4,000, only the pages (results are offered paginated) corresponding to 

the first 4,000 results will contain unique images and subsequent pages will contain duplicates of the first 4,000 results. 

To tackle this issue, a recursive algorithm was implemented, which, when a query returns more than 4,000 results, 

splits the query’s date taken interval (initially a 24-hour interval) in two and creates two new queries that are submitted 

to the API. The process continues until all queries have returned less than 4,000 results, at which point all the results 

of the initial query have been retrieved. This mechanism offers robustness against data bursts and is particularly useful 

also in the case of textual Flickr API queries (see Section 2.1.2) which return a very large number of results. 

Request frequency increase: Finally, the call frequency was increased from one call every 24 hours to one call every 6 

hours (always using a fixed lookback window of 24 hours). Although this change does not affect the total number of 

images that are collected it increases the number of fresh images (taken within the last 24 hours) that are available to 

the system at any time point. In addition, using overlapping time windows implies that a large fraction of the images 

returned with each request, will have already been collected from a previous request. Thus, an efficient way to check 

for duplicate images was implemented by exploiting MongoDB’s indexing and batch querying capabilities. 

2.1.2 Collecting Flickr Images with Textual Queries 

Given that geographical queries for Europe return only about 5,000 geotagged images per day on average (see Section 

2.3 for detailed image collection statistics) and since other social media platforms do not offer free access to their 

APIs, we explored the potential of utilizing non-geotagged Flickr images after estimating their capture location based 

on textual metadata such as image tags, title and description. Table 1 shows the total number of images returned by 

the Flickr API when queries of increasing upload date window size are submitted, as well as the numbers (and 

percentages) of geotagged images and images geotagged in Europe in the same upload date windows4. To obtain the 

total number of images in a time window, we use the flickr.photos.search endpoint and specify the 

min/max_upload_date parameters while leaving all other parameters empty. To obtain the numbers of geotagged 

images and images geotagged in Europe within the same intervals, the has_geo and woe_id parameters are 

additionally specified5. Two important observations can be made based on the results: 

 The vast majority of Flickr images are non-geotagged (≈97%). This means that there is a large pool of images 

that could be utilized for air quality estimation, provided that their location could be accurately estimated. 

 A significant percentage of the images in the non-geotagged pool are expected to be from Europe, given the 

very high representation of Europe (>50%) on geotagged images.  

Based on these observations, we expect that even if a small fraction of the non-geolocated images can be accurately 

geolocated, a significant increase to the total number of Flickr images that can be useful for air quality estimation is 

possible. 

                                                           
4 Note that these numbers are significantly higher than the previously reported average number of 5,000 images geotagged in 

Europe per day. This deviation is mainly due to the fact that the previous number refers to images uploaded within 24 hours after 

they have been captured while there is no such limitation for the number reported in Table 1. 

5 The max_upload_date timestamp was set to 1496749429 (6/6/2017) in all queries. Therefore, the reported numbers represent 

only a rough estimate of the actual numbers. 
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Table 1 –  Total, geotagged and geotagged in Europe images returned by the Flickr API for different upload date windows. 

Date uploaded window All Geotagged Geotagged in Europe 

1 4,989,264 134,122 (2.7%) 74,584 (1.5%) 

7 14,348,054 406,017 (2.8%) 220,895 (1.5%) 

30 50,084,562 1,610,467 (3.2%) 787,157 (1.6%) 

 

Estimating geographical coordinates (geotagging) of multimedia items, such as images and videos, based on massive 

amounts of geotagged training data is a research topic that has recently attracted significant attention, largely due to 

the placing task (Hauff et al., 2013), (Choi et al., 2014), (Choi et al., 2015), (Choi et al., 2016) of the MediaEval6 

benchmarking initiative for multimedia evaluation. The simplest approach for geotagging is called geoparsing and 

consists of detecting references to known locations with the help of gazetteers (Amitay et al., 2004). Geoparsing, 

however, has a few limitations such as the inability to perform inferences from text descriptions that do not explicitly 

refer to geographic entities and the inability to consider contextual information to deal with ambiguous geographic 

names (e.g., Athens may refer to the capital of Greece, but also to 23 toponyms in the US). To deal with the limitations 

of geoparsing, Language Model-based (LM) approaches were proposed (Serdyukov et al., 2009). LM approaches learn 

a probabilistic textual model using a large set of training items and then use this model to provide estimates about the 

location that a new piece of text refers to. LM approaches alleviate the disadvantages of geoparsing since they do not 

operate on an explicit toponym dictionary and take context into account by considering multiple terms to produce 

their estimates. Indeed, the best performing runs of the last three editions of the MediaEval placing task employ LM-

based approaches.  

Thus, in the context of location estimation for non-geotagged Flickr images that is in the interest of hackAIR, we 

evaluate a state-of-the-art LM-based geotagging approach (Kordopatis-Zilos et al., 2016) that has demonstrated 

excellent results in the latest edition of the MediaEval placing task (2016). According to this approach, the earth surface 

is divided into (nearly) rectangular cells with sides 0.01° for both latitude and longitude (corresponding to a geodesic 

length of approximately 1km near the equator), and the term-cell probabilities (Figure 1) are computed based on the 

user count of each term in each cell, based on a training set comprising of the union of the ≈5M training items provided 

for the 2016 placing task (Choi et al., 2016) and all geotagged items (≈40M) of the YFCC100M dataset (Thomee et al., 

2015). Given a query text, the most likely cell is derived from the summation of the respective term-cell probabilities. 

On top of this basic idea, the method features several refinements such as text pre-processing, feature selection, 

feature weighting, use of multiple resolution grids, etc. More details about these refinements can be found in the 

original paper (Kordopatis-Zilos et al., 2016). 

 

Figure 1 – Illustration of example term-cell probabilities calculated for the grid containing the city of New York. 

                                                           
6 http://multimediaeval.org/  

http://multimediaeval.org/


D3.2: 2nd Environmental node discovery, indexing and data acquisition 

     12 | 79    

Here, we use an open-source implementation of the method7 and evaluate it on the task of geolocating Flickr images 

based on their textual metadata. Since the area of interest is Europe, the evaluation is carried out on a set of ≈150K 

images geotagged in Europe that were collected using the basic (geographical) version of the Flickr collector in April 

2017. As evaluation measure, we employ the widely used Precision at 𝑅 (𝑃@𝑅) which is defined as: 

𝑃@𝑅 =  
|{𝑖|𝑑(𝐺𝑝𝑟(𝑖),𝐺𝑟𝑒𝑓(𝑖))<𝑅}|

|𝐷𝑡𝑠|
, 

where 𝐷𝑡𝑠 is a set of image items 𝑖, 𝐺𝑝𝑟(𝑖) and 𝐺𝑟𝑒𝑓(𝑖) are the estimated and reference location of  𝑖 respectively,  

𝑑(𝑥, 𝑦) is the geodesic distance between points x and y and 𝑅 is a predefined range. In our experiments, we focus on 

𝑅 = 10km and 𝑅 = 25km as less accurate estimations are not useful in the context of hackAIR.  

An advantage of the employed approach is that, in addition to providing an estimate of an image’s location, it also 

calculates a score in 𝑐 ∈ [0,1] which expresses the confidence of the estimation. This is important as it allows rejection 

of low-confidence estimations, in the hope that a better 𝑃@𝑅 can be achieved for high-confidence estimations. In our 

experiments, we study the effect of applying different cut-off thresholds 𝑡 = {0.0,0.1,0.2, … ,0.9} to reject estimations 

with confidence 𝑐 < 𝑡. In addition, we study the effect of using alternative types of metadata, i.e. title-only, tags-only, 

description-only, and title+tags+description. 

Figure 2,3,4, Figure 5 show the P@10Km and P@25Km performance as well as the respective percentage of all images 

for which estimations are made for different cut-off thresholds, using each type of metadata. As expected, the higher 

the cut-off threshold, the higher the precision and the lower the percentage of images for which estimations are 

made8. In all cases, P@25Km scores > 0.9 can be achieved with a threshold ≥ 0.7. However, comparing the results 

obtained with each type of metadata we notice that a significantly better trade-off between precision and recall is 

achieved when the union of terms in title, tags and description is used. Assuming that a P@25Km performance ≥ 0.9 

is sufficiently high, we see that title+tags+description achieves this performance goal while still providing estimations 

for the 27.3% of all images, compared to 18.7%, 16.0% and 3.5% respectively for title, tags and description. Thus, our 

analysis suggests that it is clearly advantageous to use all the available textual metadata.  

Overall, the obtained results are very encouraging as they show that we can infer the location of a significant 

percentage of non-geolocated Flickr images with high precision. Hence, we conclude that extending the Flickr collector 

to include non-geotagged images with inferred location, constitutes a promising strategy of increasing the number of 

Flickr images that could be useful for air quality estimation. 

                                                           
7 https://github.com/MKLab-ITI/multimedia-geotagging  

8 Note that the percentage of images for which predictions are made is lower than 100% even with a cut-off threshold equal to 0. 

This is due to the fact that no estimations can be made for images of which the respective metadata fields are empty (or become 

empty after pre-processing operations such as stop-word removal). 

https://github.com/MKLab-ITI/multimedia-geotagging
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Figure 2 – Location estimation performance with different cut-off thresholds using only terms in title. 

 

Figure 3 – Location estimation performance with different cut-off thresholds using only terms in tags. 
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Figure 4 - Location estimation performance with different cut-off thresholds using only terms in description. 

 

Figure 5 - Location estimation performance with different cut-off thresholds using the union of terms in title, tags and description. 
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2.2 Webcam Image Collection 

This section provides the technical details on the collection of webcam images. As done for Flickr images, the collection 

does not focus only on webcams from big cities in the countries of the pilots (Germany and Norway) but instead 

considers webcams located anywhere in Europe. To this end, two large-scale repositories of webcams are used, AMOS9 

and webcams.travel10. In the case of AMOS, a web data extraction framework (section 2.2.1) was developed, while in 

the case of webcams.travel, data is retrieved through a client application for the provided API (section 2.2.2). 

Combined, these two sources provide data from more than 25,000 webcams in Europe. In a set of exploratory 

experiments, we found that most of the webcams discovered in a specific location (city/region) using standard search 

engines (e.g. Google, Bing) or focused crawling approaches (as the one described in D3.1), are already contained in 

either AMOS or webcams.travel. Based on this, we focused on the integration of these large-scale repositories instead 

of developing a specialized webcam discovery framework (as suggested in D3.1). 

2.2.1 Collecting Images from AMOS Webcams 

A detailed description of the AMOS dataset (Jacobs, 2007) was provided in D3.1. Here, we provide the technical details 

of the data collection framework that we developed in order to retrieve data from the AMOS website.  

The first step consists of identifying the ids of all webcams that are located in Europe. This is accomplished by using 

the advanced filters form of the “Browse Cameras” page11 that allows searching for webcams with multiple criteria 

including search for webcams located inside a specific bounding box (latitude/longitude range). Since we are interested 

in all webcams located in Europe, we define a bounding box that includes the whole European continent, i.e. latitude 

range: [27.6363 - 81.0088], longitude range: [-31.2660, 39.8693]. When this query12 is submitted, 4,893 matching 

webcams are found (note that not all matching webcams are active though) and returned13 in a results page that 

shows an image (snapshot) from each webcam as well as its title. The image of each webcam is clickable and links to 

a page (an example is provided in section 3.5.3.2 of D3.1) that provides all the information that is available for the 

webcam such as the webcam id, the link to the latest image captured from the webcam, the latest capture date/time 

and the geolocation of the webcam. Ideally, we would like to visit each webcam page only once to extract its static 

information (id, geolocation) and then use the script provided in the AMOS website (see section 4.3 of D3.1 for more 

details) to download the latest image of each webcam. Unfortunately, though, the provided script (and the 

corresponding REST service that is called by the script) is mainly targeted towards download of historical data and as 

a result gives the option to download a whole year or month of data from each webcam but not data from a single 

date or just the most recent snapshot from each webcam. Since it would be very inefficient to download a whole 

month of images every time a new image needs to be fetched from each webcam, we did not use the provided script 

and implemented instead a customized web scrapper for the AMOS website. 

The web data extraction method that we implemented to retrieve data from the AMOS website works as follows: 

 A query is constructed using the advanced filters form to retrieve a list of all webcams located in Europe (as 

described above). 

                                                           
9 http://amos.cse.wustl.edu/ 

10 https://www.webcams.travel/ 

11 http://amos.cse.wustl.edu/browse_with_filters  

12 http://amos.cse.wustl.edu/browse_with_filters?start=0&step=4893&longitude_1=39.8693&longitude_0=-

31.2660&latitude_1=81.0088&latitude_0=27.6363  

13 The results are paginated (25 per page) but we manipulate the start and step URL parameters so that all matching webcams are 

returned in a single results page. 

http://amos.cse.wustl.edu/
https://www.webcams.travel/
http://amos.cse.wustl.edu/browse_with_filters
http://amos.cse.wustl.edu/browse_with_filters?start=0&step=4893&longitude_1=39.8693&longitude_0=-31.2660&latitude_1=81.0088&latitude_0=27.6363
http://amos.cse.wustl.edu/browse_with_filters?start=0&step=4893&longitude_1=39.8693&longitude_0=-31.2660&latitude_1=81.0088&latitude_0=27.6363
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 The results page is parsed to extract the URLs of the webcam pages. 

 Each webcam page is downloaded and parsed to extract the necessary information. In particular, we first 

check the “Last Captured” date to determine whether a new image is available for this webcam. If the last 

captured date is older than 24 hours in the past, we know that the webcam is inactive because AMOS normally 

captures a new image from each webcam every 30 minutes. If the capture date is more recent than 24 hours 

in the past, we create a new MongoDB record that contains all the necessary information (an example record 

is shown in Figure 6Error! Reference source not found.) and attempt to insert the image in a MongoDB 

repository where we store all the collected images. Note that in case the same image has already been 

retrieved, the insert fails because the unique id field of each webcam image is populated using the webcam id 

and the timestamp of the image. 

 Finally, all new webcam images are jointly downloaded using an efficient multi-threaded downloader and 

stored on the server until image analysis is performed. 

The AMOS image collector is executed four times per day (at 7:00, 11:00, 14:00 and 18:00) using a Java-based 

scheduler. During the period that we collect data from AMOS (6/3/2017-now) we have found that 2,246 of the 4,893 

webcams are active. Their geographical distribution is shown in Figure 7. We see that almost all European counties are 

well represented. Norway is the country with most webcams (430) while a significant number of webcams (134) can 

also found also in Germany, the other country of the pilots. Of course, not all the discovered webcams depict the sky. 

However, the effort required to manually check all webcams in order to exclude non-sky-depicting ones would be 

prohibitive. Therefore, we initially collect images from all the discovered webcams, process them using the image 

analysis service (see section 3.3) and record the image analysis results. A statistical analysis of these results (presented 

in section 3.4) can help us determine the fraction of sky-depicting webcam images and facilitates automatic rejection 

of non-sky-depicting webcams.  

 

Figure 6 - The MongoDB record of a webcam image from the AMOS dataset. 
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Figure 7 – Geographical distribution of AMOS webcams. 

2.2.2 Collecting Images from webcams.travel API Webcams 

Webcams.travel is a very large outdoor webcams directory that currently contains 64,475 landscape webcams 

worldwide. Webcams.travel provides access to webcam data through a comprehensive and well-documented free 

API14. The provided API is RESTful, i.e. the request format is REST15 and the responses are formatted in JSON (everything 

is UTF-8 encoded) and is available only via Mashape16. For the purposes of hackAIR, we implemented an image 

collector application that uses the webcams.travel API to collect data from European webcams. The details of the 

webcams.travel webcam image collector are given below. 

To get a list of all webcams located in Europe along with all the required information, queries of the following type are 

used: 

 https://webcamstravel.p.mashape.com/webcams/list/continent=EU/orderby=popular,desc/limit={limit},{offs

et}?show=webcams:basic,image,location  

In this type of queries the /webcams/list/ endpoint is exploited along with the continent=EU explicit modifier which 

narrows down the complete list of webcams to contain only webcams located in Europe. Moreover, two implicit 

modifiers are used: a) orderby and b) limit. The orderby modifier has the purpose of enforcing an explicit ordering of 

the returned webcams. This is important because API limitations do not allow us to get data from more than about 

1,000 out of the 24,319 European webcams contained in webcams.travel. By enforcing an explicit ordering (in this 

case webcams are sorted in descending popularity17 order) we ensure that roughly the same webcams are returned 

in the top 1,000 results every time new data is pulled from the API. Having regular measurements from the same 

locations is beneficial for the data fusion module developed in WP4.  

                                                           
14 https://developers.webcams.travel/ 

15 https://en.wikipedia.org/wiki/Representational_state_transfer 

16 https://www.mashape.com/ 

17 According to webcams.travel API documentation: “popularity reflects which webcams are currently of interest”. 
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The other implicit modifier (limit) is used to slice the list of webcams by limit (the number of webcams in the resulting 

list) and offset (the offset from where to start listing the webcam for the resulting list). The use of this modifier is 

necessary because the maximum number of results that can be returned with a single query is 50 (i.e. the max value 

of the limit parameter is 50) and in our case, we want to pull data from 1,000 webcams. Thus, 20 queries must be 

performed with appropriate values for the offset parameter. The last part of the query 

(show=webcams:basic,image,location) is used so that the response contains webcam objects that besides the basic 

information for each webcam (id, status, title) also contain the URL of the latest image captured from the webcam 

(and its timestamp) and the webcam’s exact geographical location.  

Figure 8 shows the form of the response returned by webcams.travel to the above query. After all the queries have 

been completed, all the collected webcam objects are parsed to extract the required information and MongoDB 

records of a similar form with those created for AMOS webcams are created. Non-active webcams and duplicate 

images are handled in the same way as described above for the AMOS dataset. We notice that the webcams.image 

object contains pointers to four differently sized images. Among them, we pick the URL pointing to the largest size 

image which is “preview” and has a size of 400x224. Figure 9 shows an example MongoDB record for an image from 

webcams.travel. 

Similarly to the AMOS image collector, the webcams.travel image collector is executed four times per day (at 7:00, 

11:00, 14:00 and 18:00). Figure 10 shows the geographical distribution of the 1,000 most popular European webcams 

from webcams.travel18. In this case, Switzerland is the country with the most webcams (283) followed by Italy and 

Germany with 253 and 177 webcams respectively. 

 

                                                           
18 Note that a slightly different set of webcams might be returned each time this query is realized. 
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Figure 8 - Example response from the webcams.travel API. 

 

Figure 9 - The MongoDB record of a webcam image from webcams.travel. 
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Figure 10 – Geographical distribution of webcams.travel webcams. 
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2.3 Image Collection Statistics 

The three image collectors, i.e. the updated Flickr collector, the AMOS webcams collector and the webcams.travel 

collector, have been collecting images since 24/2/2017, 6/3/2017 and 2/5/2017, respectively. During this period and 

until 15/5/2017 (the date when a snapshot of the repository was taken for reporting purposes) 1,019,938 images had 

been collected in total across the whole Europe from all sources. In the following paragraphs, we present statistics of 

the image collection. 

Figure 11 shows the number of images collected daily from each source. We see that the number of images collected 

each day by the two webcam image sources is almost stable (apart for few days were the collection of images from 

AMOS failed due to network connectivity issues with the server that runs the data collector) since an almost fixed 

number of webcams are visited a fixed number of times each day. In particular, 2,246 webcams from AMOS and 1,000 

webcams from webcam.travel are visited exactly four times per day and, as a result, about 9,000 and 4,000 images, 

respectively, are collected daily from these sources. On the other hand, the number of images collected daily from 

Flickr exhibits a large variability since it depends on the number of geotagged images (in Europe) that are uploaded 

daily by Flickr users. As expected, the number of images collected from Flickr increases significantly during Saturday 

and Sunday, since users tend to capture and upload more images during weekends. On average, about 5,500 images 

are collected daily from Flickr. 

 

Figure 11 – Number of images collected daily from each source 

During the collection period, we retrieved images from almost every country in Europe. Figure 12 shows the 

percentage of the total number of collected images (≈1M) corresponding to each country, while Figure 13 shows the 

total numbers of Flickr and webcam images collected from each country (only the top 20 countries are shown in all 

cases to increase the readability of the figures). We see that most images come from the UK, mainly because most 

Flickr images are from there, while Norway is second in the rank because it is the country where most webcams are 

located (given our collection criteria). Germany, another country of interest for hackAIR (since pilots will take place in 

Germany and Norway) is also very well covered, exhibiting a balanced number of Flickr and webcam images. Figure 14 

shows the total number of images collected daily in Germany and Norway. We see that after the full integration of all 

image sources (in May), more than 1,000 and 2,000 images are collected daily from Germany and Norway, respectively. 
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As we will see in Section 3.4, these larger numbers of collected images lead to a large number of sky-depicting images 

that can be used for air quality estimation. 

 

Figure 12 – Percentage of the total number of collected images coming from each European country (top 20 are shown) 

 

Figure 13 – Total number of Flickr and webcam images collected from each European country (top 20 are shown) 
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Figure 14 –Total number of images collected daily from Germany and Norway  
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2.4 Collecting Measurements from Ground Stations 

In this section, we present the framework that we developed for collecting air quality measurements (specifically PM10 

and PM2.5) from ground stations. The framework is based on the collection of data from OpenAQ19, an air quality web 

service that was briefly described in D3.1 (section 3.3.3). OpenAQ is an open data platform that aggregates and shares 

air quality data from multiple official sources around the world. The data offered by the platform is of high quality as 

they mainly come from official, usually government-level organizations. The platform offers the data as they are 

received from their originating sources, without performing any kind of transformations. In particular, the following 

five main criteria are used for deciding upon the suitability of the data sources that are included in the platform20: 

1. Data must be of one of these pollutant types: PM10 (of interest to hackAIR), PM2.5 (of interest to hackAIR), 

sulfur dioxide (SO2), carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), or black carbon (BC). 

2. Data must be from an official-level stationary, outdoor air quality source, defined as data produced by a 

government entity or international organizations. 

3. Data must be ‘raw’ and reported in physical concentrations on their originating site. 

4. Data must be at the ‘station-level,’ not aggregated into a higher (e.g. city) level. 

5. Data must be from measurements averaged between 10 minutes and 24 hours. 

Importantly, the OpenAQ system checks each data source for updates information every 10 minutes. Thus, it is 

guaranteed that the data will be almost as real-time as they are offered by the original sources. With respect to 

geographical coverage, the platform collects measurements from 5,629 locations in 48 countries. Since the focus of 

the hackAIR project is the collection of PM10 and PM2.5 measurements from countries in Europe, Table 2 shows the 

European countries for which PM10 and/or PM2.5 data is provided, the number of locations that provide data in each 

country, as well as the corresponding data source. We observe that data for 17 European countries are available. In 

most cases, the data source is the European Environmental Agency21 (EEA) but additional official-level data sources 

are included (e.g. DEFRA22 in the United Kingdom). We observe that PM10 data are available from more locations in 

each country compared to PM2.5 data with only three exceptions (United Kingdom, Belgium and Poland) where a 

similar number of PM10 and PM2.5 locations are available. In total, OpenAQ provides PM10 and PM2.5 data from 

1728 and 737 locations in Europe, respectively. We also observe that the countries of the pilots are very well 

represented, with 434 PM10 and 183 PM2.5 locations in Germany and 48 PM10 and 37 PM2.5 locations in Norway.  

Table 2 – European countries for which data is available in the OpenAQ platform along with data source (second column), 

number of locations with PM 10 data (third column) and number of locations with PM2.5 data (fourth column). The URLs of the 

data sources are used in some cases because the source name is not provided by OpenAQ. 

Country Data source # PM 10 locations # PM 2.5 locations 

France EEA France 372 147 

Germany EEA Germany 434 182 

Spain EEA Spain 243 72 

Austria EEA Austria 199 0 

United Kingdom DEFRA 71 74 

                                                           
19 https://openaq.org 

20 More details can be found here: https://medium.com/@openaq/where-does-openaq-data-come-from-a5cf9f3a5c85  

21 https://www.eea.europa.eu/ 

22 https://uk-air.defra.gov.uk/ 

https://openaq.org/
https://medium.com/@openaq/where-does-openaq-data-come-from-a5cf9f3a5c85
https://www.eea.europa.eu/
https://uk-air.defra.gov.uk/
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Netherlands http://www.lml.rivm.nl/sos/ 94 64 

Czech Republic EEA Czech Republic 83 52 

Belgium EEA Belgium 61 63 

Norway luftkvalitet.info  48 37 

Finland EEA Finland 37 16 

Croatia EEA Croatia 17 9 

Hungary EEA Hungary 24 1 

Bosnia and Herzegovina http://www.fhmzbih.gov.ba 11 5 

Poland http://sojp.wios.warszawa.pl 9 10 

FYROM EEA FYROM 15 0 

Sweden Swedish data from SLB analys 9 4 

Ireland EEA Ireland 1 1 

Total 1728 737 

 

Based on its characteristics, OpenAQ is considered an ideal source of PM10 and PM2.5 ground station measurements 

for the hackAIR platform. Therefore, a specialized data collection framework was developed to retrieve data from the 

REST API provided by OpenAQ23. The /latest endpoint24 of the API is used, which provides the latest value of each 

available parameter (pollutant) for every location in the system. To avoid retrieving results from non-European 

countries, we use the optional parameter “country” that is used to limit results by a certain country. In addition, to 

avoid retrieving results for pollutants other than PM10 and PM2.5, the “parameter” parameter is used. Thus, two 

queries are performed for each of the 17 European countries, one to retrieve the latest PM10 measurements and one 

to retrieve the latest PM2.5 measurements. For instance, the following two queries are used to retrieve the latest data 

PM10 and PM2.5 data for Norway: 

 https://api.openaq.org/v1/latest?parameter=pm10&country=NO  

 https://api.openaq.org/v1/latest?parameter=pm25&country=NO  

Figure 15 shows a part of the response of the OpenAQ API to the first of the above queries. We notice that the response 

contains all the required information for each measurement, i.e. exact geolocation and time, value and unit.  

The air quality data collector queries the OpenAQ API for the latest data once every hour and stores new 

measurements in the MongoDB-based environmental node repository that was described in D3.1 (section 6.4). Figure 

16 shows an example record from this repository. We see that the record contains the following fields:  

 “_id” is a unique object identifier added automatically by MongoDB 

 “datetime” stores the timestamp of the measurement 

 “loc” stores the geographical coordinates of the measurement station 

 “source_type” stores the type of the data source of the measurement25 

                                                           
23 https://docs.openaq.org/ 

24 https://docs.openaq.org/#api-Latest 

25 Currently all measurements come from OpenAQ but additional source types can be integrated in the future. 

http://www.lml.rivm.nl/sos/
http://www.fhmzbih.gov.ba/
http://sojp.wios.warszawa.pl/
https://api.openaq.org/v1/latest?parameter=pm10&country=NO&limit=10000
https://api.openaq.org/v1/latest?parameter=pm25&country=NO
https://docs.openaq.org/
https://docs.openaq.org/#api-Latest
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 “pollutant” is the type of the pollutant (pm10 or pm25) 

 “value” is the value of the pollutant 

 “unit” is the measurement unit 

 “countryCode” the code of the country as given from OpenAQ 

 “location” the name of the location in OpenAQ 

 “sourceName” the name of the source in OpenAQ 

 “id” is a unique identifier (upon which a unique MongoDB index is built) populated as 

[“countryCode”_“location”_“pollutant”_timestamp]. It is used to avoid retrieval of measurements that have 

already been retrieved (i.e. duplicates).  

 

 

Figure 15 – Example response from the latest endpoint of the OpenAQ API. 
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Figure 16 – Example MongoDB record of an environmental measurement from the OpenAQ API.  

 

The environmental data retrieval framework was deployed on 21/12/2016 and has been continuously collecting data 

since then. As a result, the repository currently contains more than 1 million measurements in total. To facilitate an 

easy inspection of the collected data, their geographical distribution, and the current air quality conditions in Europe 

(in terms of PM10 and PM2.5) we built a web application26 that displays the latest PM10 and PM2.5 measurements 

with appropriate markers on a map. Figure 17 shows two screenshots of the application. We see that the application 

offers three ways of filtering the results: a) based on country (initially results from all European countries are shown), 

b) based on pollutant type (PM10/PM2.5) and c) based on the pollution class (index) corresponding to each 

measurement. The mapping from absolute PM10/PM2.5 values to pollution classes is performed according to Table 

3. In addition, there is the option of filtering measurements that are not recent (i.e. older than 24hours). We see that 

markers contain a number that corresponds to the pollutant value at the specific location and are colored according 

to the respective pollution class. In case non-recent measurements are not filtered, the corresponding markers have 

a grey color. When an individual marker is clicked, a pop-up window opens that shows additional details about the 

measurements such as the time it was last updated and the name of the location. 

                                                           
26 http://hackair-mklab.iti.gr/sensors/ 

http://hackair-mklab.iti.gr/sensors/
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Figure 17 - Screenshots of the ground station data collection visualization web application. 

Table 3 - Mapping of absolute PM10/PM2.5 values to pollution classes. 

Class name PM10 scale (μg/m3) PM2.5 scale (μg/m3) 

Very good >=0 and <=20 >=0 and <=10 

Good >20 and <=50 >10 and <=25 

Medium >50 and <=70 >25 and <=35 

Bad >70 >35 
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3 Image Analysis Experiments and Statistics 
In D3.1, we presented and evaluated two alternative methods for detecting sky regions in sky-depicting images. The 

first approach is based on state-of-the-art machine learning algorithms and consists of the combination of a visual 

concept detection framework (see section 5.2.1.1 of D3.1) that is used to detect images that depict sky, and a sky 

localization framework (see section 5.2.1.2 of D3.1) that is used to specify the sky region of the image. The second 

approach consists of a set of simple heuristic rules provided by image-based air quality estimation experts (DUTH) and 

aims at directly detecting sky regions that are suitable for image-based air quality estimation. According to the 

evaluation reported in D3.1, the machine learning-based approach performed better than the heuristic approach. 

However, the evaluation was performed on a general-purpose benchmark collection where the regions annotated as 

sky might not always be suitable for air quality estimation (e.g., because they contain clouds).  

In section 3.1, we present a new evaluation of the two methods (and of their combination) on a real-world dataset 

that was annotated by air quality estimation experts from DUTH based on the suitability of the sky region for 

performing air quality estimation using the Look Up Table (LUT)-based approach that was presented in D3.3. Then, in 

section 3.2, we study the robustness of image analysis results with respect to various widely applied image 

transformation and filters. Section 3.3 describes the final architecture of the image analysis service that we developed 

and discusses the computational load of its various processing steps.  Finally, section 3.4 presents statistics of the 

image analysis service (collected over a period of more than two months) that allow us to estimate the number of 

usable images that we can retrieve daily, both across the whole Europe and in specific countries of interest to hackAIR 

(i.e. Germany and Norway). 

3.1 Evaluation of Sky Localization Methods 

In this section, we carry out an air quality estimation-oriented evaluation of the two sky localization approaches 

presented in D3.1: Fully Convolutional Neural Networks (FCN) (Long et al., 2015) and the heuristic rule-based approach 

proposed by DUTH (heuristic). In D3.1, both approaches were evaluated on the SUN database27 (Xiao, 2010), a general-

purpose benchmark collection for image annotation and segmentation tasks. The evaluation was carried out on 2,030 

images that were annotated with the concept sky and for which the polygons of the sky part of the image were 

provided. In this evaluation, the FCN approach was found to perform significantly better than the heuristic approach 

as it achieved a 0.9177 pixel-wise precision and a 0.9425 pixel-wise recall versus a 0.8245 pixel-wise precision and a 

0.5922 pixel-wise recall for the heuristic approach. However, a more critical analysis of the results that involved a visual 

inspection of the ground truth annotations of the collection’s images, revealed that the image region that is annotated 

as “sky” is not always suitable for air quality estimation as in many cases the sky part is not clear (e.g. contains clouds, 

the sun, small objects, etc.).  In addition, hackAIR’s image collection framework has been extended to include webcam 

images which are expected to pose additional challenges to the sky localization methods due to their distinct 

characteristics (e.g., text overlays). 

For these reasons, we designed a new specialized evaluation of the two sky localization methods that focuses explicitly 

on their ability to correctly identify sky regions that are suitable for air quality estimation using the LUT-based 

approach. To this end, out of ≈500K images that we collected during the period 24/2/2017-14/3/2017, we filtered out 

those in which the detection confidence of the sky concept is not very high (< 0.8) to ensure that most of the remaining 

images will depict sky and then took a random sample of approximately 100 Flickr and 100 Webcam images. For each 

of these images, we extracted sky masks using: a) the FCN approach and b) the heuristic approach and with the help 

of experts from DUTH we answered the following questions for each image: 

 Q1-a: Does the image contain a sky region usable for air quality estimation? (Yes/No) 

                                                           
27 http://groups.csail.mit.edu/vision/SUN/ 

http://groups.csail.mit.edu/vision/SUN/
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 Q1-b: Please shortly describe the reason if you answered No to Q1-a. 

 Q2-a: Is the sky region selected with the FCN approach usable for air quality estimation? (Yes/No) 

 Q3-a: Is the sky region selected with the heuristic approach usable for air quality estimation? (Yes/No) 

The first question (Q1-a) aims at helping us identify images with a sky region usable for air quality estimation, so that 

we can subsequently evaluate the different sky localization methods only on images with a usable sky region. Figure 

18 shows the distribution of responses to Q1-a and Q1-b, separately for Flickr images (left) and webcam images (right). 

We see that in both cases, about 60% of the images contain a sky region that is usable for air quality estimation (Yes 

to Q1-a). Looking at the distribution of responses to Q1-b, we see that in most cases and for both Flickr and webcam 

images, it is the presence of clouds or cirrus clouds (a genus of atmospheric cloud generally characterized by thin, 

wispy strands) or the fact that the image is captured too early in the morning or too late in the evening that render 

images unusable for air quality estimation, despite the existence of a sky region. Other reasons include humidity, 

rain/snow, strange images (usually deformed webcam images due to camera movement), artistic images and a very 

small number of images (5 out of 197) that do not depict sky at all. Figure 19 shows some examples of sky-depicting 

images that are considered unusable for air quality estimation.  

 

Figure 18 – Reponses to Q1-a and Q1-b for Flickr images (left) and webcam images (right). 
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Figure 19 – Examples of sky-depicting images that are considered unusable for air quality estimation due to (left to right): a) 

cirrus clouds, b) clouds, c) hour of the day (too late or too early), d) humidity 

Having identified images with usable sky regions, we now focus our analysis on the ability of each sky localization 

approach to extract these regions. The results are presented in Figure 20, which shows the percentages of correctly 

detected image regions using the FCN (Q2-a) and the heuristic (Q3-a) approach for Flickr and webcam images. At a 

first glance, the performance of the two methods appears much worse than the performance obtained on the SUN 

database. Note, however, that the evaluation performed here is much stricter as even if a small percentage of the 

region recognized as sky includes non-sky elements (e.g., clouds, buildings, text overlays), then the whole region is 

marked incorrect. An illustrative example is provided in Figure 21, depicting a case where both masks are considered 

incorrect, even though a sizable percentage of the region recognized as sky is indeed sky (especially in the FCN 

approach). Moreover, we observe that in contrast to the results obtained when the evaluation was performed on the 

SUN database, the heuristic approach performs better than the FCN approach as it manages to correctly detect the 

sky region in 45.76%/50.00% of the Flickr/webcam images versus only 28.81%/20.69% for the FCN approach. As we 

found by performing a visual inspection of the masks generated by each approach, this difference probably stems from 

the fact that the heuristic approach generates much more detailed sky masks which seems to be advantageous for this 

type of evaluation.  

 

Figure 20 - Percentages of correctly/incorrectly detected sky regions using each sky localization approach for Flickr images (left) 

and webcam images (right). 
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Figure 21 - Inappropriate sky masks extracted using the FCN (middle) and the heuristic (right) approach for a Flickr image (left). 

Visual comparison of the generated masks revealed that each approach has its own merits and works better in different 

situations. Particularly, we noticed that the FCN approach is better at avoiding “big” mistakes (e.g. recognizing sea, 

buildings or windows as sky), while the heuristic approach is very good at filtering out small objects (e.g. tree branches) 

and text overlays that are very common in images from webcams. Some illustrative examples are presented in Figure 

22. In the first row, we see that although the FCN approach (2nd column) correctly identifies the sky region, it misses 

the white pillar. The heuristic approach (3rd column), on the other hand, correctly filters the pillar but gets confused 

by the bus windows. Similar is the situation in the second and third row where we see that the heuristic approach 

manages to discard small non-sky elements (clouds in the second row and text overlay in the third row) that are not 

discarded by the FCN approach which, on the other hand, does a much better job at not being confused by water 

(second row) and part of mountains (third row).  

Motivated by the complementarity of the two approaches, we decided to develop a sky localization approach that 

combines them (FCN+heuristic). More specifically, we first calculate a sky mask using the FCN approach and then apply 

the heuristic algorithm described in D3.1, considering only those pixels that have been recognized as sky by the FCN 

approach. This way, we manage to exploit the effectiveness of the FCN approach in roughly recognizing the sky region 

of the image and then utilize the heuristic approach to discard small non-sky elements. The last column of Figure 22 

shows the masks extracted by the FCN+heuristic approach. We see that in all cases, FCN+heuristic correctly identifies 

the sky region. Besides this visual evaluation, we also performed a quantitative evaluation of the FCN+heuristic 

approach, as we did for FCN and heuristic, i.e. we counted the number of times a usable sky region was extracted by 

the FCN+heuristic approach by collecting responses to the question: “Q4-a: Is the sky region selected with the 

FCN+heuristic approach usable for air quality estimation? (Yes/No)”. The results of this evaluation are presented in 

Figure 23, which shows the percentages of correctly and incorrectly detected sky regions for each approach, when 

considering all images (Flickr and webcam images). As expected, there is a very large improvement as 80.34% of the 

sky regions are correctly recognized by the FCN+heuristic approach, compared to 47.86% for the heuristic approach 

and 24.79% for the FCN approach. 
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Figure 22 – Comparison of the masks generated by the FCN approach (second column) with the masks generated by the heuristic 

approach (third column) for the images of the first column. The fourth column shows the masks generated by combining the FCN 

approach with the heuristic approach. 

 

Figure 23 – Comparison of FCN, heuristic and FCN+heuristic sky localization approaches when all images are considered. 
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3.2 Robustness of Image Analysis against Image Transformations 

A positive consequence of relying on images from Flickr and webcams instead of images from Instagram is that: a) the 

use of image filters that might distort the calculated R/G and G/B ratios is expected to be less frequent on Flickr than 

it is on Instagram28, b) webcam images are typically unfiltered. Nevertheless, Flickr introduced a new interface (Figure 

24) in its Android/IOS apps in 2014 which allows users to apply Instagram-like filters (14 different filters are provided) 

and to adjust the overall appearance of the pictures by changing the levels of brightness, contrast, saturation, color 

balance, etc. Moreover, advanced users sometimes preprocess their images with independent image processing 

software before uploading them on Flickr. Therefore, it is important to study the impact that several common 

transformations have on the R/G and G/B ratios that are calculated from the images and used as input by the image-

based air quality estimation module. 

 

Figure 24 - Image enhancements (left) and filters (right) offered by Flickr's Android/IOS app. 

To perform this kind of analysis we had to: a) select a representative set of original images, b) apply a number of widely 

used image transformations to generate transformed versions of the original images, c) apply image analysis to extract 

                                                           
28 Although we could not find or collect (filter information is not provided through the API) filter usage statistics, we presume that 

the practice of using image filters to attract more likes is much more pronounced on Instagram due its app design and mobile-first 

and “social” nature. In contrast, uploading images on Flickr is typically done through a web browser, while the option to apply 

filters is given only when images are uploaded through the mobile app. 
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R/G and G/B ratios from both the original and the transformed images and d) compare the ratios calculated from 

original versus transformed images.  

With respect to the selection of a representative set of original images, we wanted to ensure (as much as possible) 

that the set will consist of images that: 1) have not already undergone transformations and 2) contain a sky region 

suitable for air quality estimation. One option would be to manually capture photos of the sky and validate the 

correctness of the extracted sky regions. However, in order to be able to perform a more large-scale and principled 

evaluation we followed a different approach. In particular, we used all Flickr images taken in 2012 and geotagged in 

Thessaloniki, Greece for which the AOD estimations generated by the image-based air quality estimation models 

(developed within T3.3) agree completely with the ground truth AOD values provided by both MODIS29 and AERONET30 

(see D3.4 for more details)31. Since the images are from 2012 and the filters were introduced in the Flickr app in 2014, 

we know that no transformations have been applied on the images (at least using the Flickr app). Moreover, the fact 

that the AOD values estimated from these photos agree with the ground truth AOD values from two independent 

sources, ensures that the computed R/G and G/B scores are valid (i.e. have been calculated from a valid sky region). 

With respect to the application of image transformations to generate transformed versions of the original images, one 

option would be to manually transform each image using the Flickr app. However, to evaluate the impact of all types 

of transformation offered by the Flickr app (>20) a prohibitive amount of manual effort would be required (20 

transformations x 87 images = 1740 images would have to be manually transformed, uploaded to Flickr and then 

downloaded). Moreover, since users can preprocess their photos with other software before uploading them to Flickr, 

we decided to focus our analysis to common image transformations beyond those offered by the Flickr app.  

To this end, the Cloudinary32 platform was used. Cloudinary is a Software-as-a-Service (SaaS) solution for managing 

media assets of web or mobile applications in the cloud via a set of APIs. What we are interested in here is its 

comprehensive image manipulation API33  which offers a wide variety of image transformations such as resizing, 

cropping, format conversion and, most importantly, image effects and filters. Among the large variety of 

transformations offered by Cloudinary we focused on the following four popular categories of transformations: a) 

resizing, b) color level effects, c) automatic image improvement effects and d) artistic filters.by those offered by 

Cloudinary. 

 

Table 4 presents all the transformations that we applied (grouped by category) along with the effect that each 

transformation has on an example image and the R/G and G/B scores calculated from that image. From the resizing 

category, we chose four transformations that resize the original image to progressively smaller sizes. Robustness of 

the calculated ratios against downsizing is important because a moderate downsizing34 is applied for efficiency reasons 

to all the collected images before they are sent for image analysis. The color level effects category includes 

transformations that are offered by the Flickr app, i.e. change of the image brightness and saturation, and the 

automatic image improvement effects category includes five transformations that are very commonly offered by 

image processing software. Finally, the artistic filters category includes eight artistic filters randomly selected by those 

offered by Cloudinary. 

                                                           
29 https://modis.gsfc.nasa.gov/  

30 https://aeronet.gsfc.nasa.gov/  

31 This dataset was originally composed to facilitate an evaluation of the image-based air quality estimation models developed 

within T3.3. 

32 http://cloudinary.com/   

33 http://cloudinary.com/documentation/image_transformations  

34All images are downsized to a maximum size of 250K pixels before image analysis is performed. 

https://modis.gsfc.nasa.gov/
https://aeronet.gsfc.nasa.gov/
http://cloudinary.com/
http://cloudinary.com/documentation/image_transformations
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Table 4 – Category (1st column), name (2nd column) and description (3rd column) of the tested image transformations, along with 

their effects on an example image (4th column) and their impact on the computed R/G and G/B ratios (5th and 6th column). A 

hyphen (-) in the 5th, 6th column means that no  R/G, G/B ratios were computed because no usable sky was detected. 

Category Name Description Example R/G G/B 

- original 
The original image (size 

500x331) 

 

0.799 0.8517 

R
es

iz
in

g 

w:400 

Resize width to 400 pixels 

while maintaining aspect 

ratio. 

 

0.798 0.8510 

w:300 

Resize width to 300 pixels 

while maintaining aspect 

ratio. 

 

0.800 0.8516 

w:200 

Resize width to 200 pixels 

while maintaining aspect 

ratio. 

 

0.800 0.8509 

w:100 

Resize width to 100 pixels 

while maintaining aspect 

ratio. 

 

0.796 0.8479 
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Category Name Description Example R/G G/B 
C

o
lo

r 
le

ve
l e

ff
ec

ts
 

brightness:20 
Increase image brightness by 

20% (Range: -99 to 100) 

 

- - 

brightness:50 
Increase image brightness by 

50% (Range: -99 to 100) 

 

- - 

brightness:80 
Increase image brightness by 

80% (Range: -99 to 100) 

 

- - 

saturation:20 

Increase the image's color 

saturation by 20% (Range: -

100 to 100) 

 

0.766 0.8355 

saturation:50 

Increase the image's color 

saturation by 50% (Range: -

100 to 100) 

 

0.718 0.8101 
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Category Name Description Example R/G G/B 

saturation:80 

Increase the image's color 

saturation by 80% (Range: -

100 to 100) 

 

0.665 0.7933 

sepia 
Change the color scheme of 

the image to sepia 

 

- - 

A
u

to
m

at
ic

 im
ag

e 
im

p
ro

ve
m

en
t 

ef
fe

ct
s 

gamma Adjust the gamma level 

 

0.799 0.8515 

improve 
Automatically adjust image 

colors, contrast and lightness 

 

0.726 0.8262 

auto_brightness 
Automatically adjust 

brightness. 

 

0.804 0.8545 
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Category Name Description Example R/G G/B 

auto_contrast 
Automatically adjust 

contrast. 

 

0.801 0.8532 

auto_color 
Automatically adjust color 

balance. 

 

0.804 0.8494 

A
rt

is
ti

c 
fi

lt
er

s 

art:al_dente 

The art:<filter> effects 

brighten highlights, intensify 

shadows, apply sepia-like 

filters, add vignetting, and 

more. 

 
 

0.862 0.8993 

art:eucalyptus 

The art:<filter> effects 

brighten highlights, intensify 

shadows, apply sepia-like 

filters, add vignetting, and 

more. 

 

0.806 0.8990 

art:incognito 

The art:<filter> effects 

brighten highlights, intensify 

shadows, apply sepia-like 

filters, add vignetting, and 

more. 

 

- - 
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Category Name Description Example R/G G/B 

art:red_rock 

The art:<filter> effects 

brighten highlights, intensify 

shadows, apply sepia-like 

filters, add vignetting, and 

more. 

 

0.870 0.7847 

art:zorro 

The art:<filter> effects 

brighten highlights, intensify 

shadows, apply sepia-like 

filters, add vignetting, and 

more. 

 

0.779 0.8464 

art:primavera 

The art:<filter> effects 

brighten highlights, intensify 

shadows, apply sepia-like 

filters, add vignetting, and 

more. 

 

0.714 0.8375 

art:athena 

The art:<filter> effects 

brighten highlights, intensify 

shadows, apply sepia-like 

filters, add vignetting, and 

more. 

 

0.869 0.9090 

art:aurora 

The art:<filter> effects 

brighten highlights, intensify 

shadows, apply sepia-like 

filters, add vignetting, and 

more. 

 

0.737 0.8128 
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To automatically generate transformed versions of all the original images, we used the “eager” transformations 

approach35 offered through Cloudinary’s Java SDK to simultaneously apply all 24 transformations while uploading the 

images on Cloudinary. Upon completion of the upload and the transformations, Clourinary returns a response that 

contains the URLs of the transformed versions of the image. The response is parsed to extract the URLs and the 

transformed images are downloaded and forwarded to the image analysis module which calculates the corresponding 

R/G and G/B ratios, provided that a usable sky region is detected. 

Having generated R/G and G/B ratios for all the original and transformed images, we computed the Pearson 

correlations between the ratios computed from the original images and those computed for each set of transformed 

images. The results are shown in Table 5 where we also report the percentage of images for which no ratios were 

computed after each transformation (due to the fact that no usable sky was detected after the transformation). We 

see that both the R/G and the G/B ratios are very robust against image transformations as a very high Pearson 

correlation is observed in most cases. In particular, we observe that the correlation is almost perfect for all the resizing 

transformations, while very high correlations (>0.9) are observed for all automatic image improvement effects. In the 

case of artistic image filters, again very high correlations are observed except for the red_rock filter that leads to low 

correlation between the R/G scores. Another notable exception is the increase of brightness where we see that a 

moderate (50%) and especially a large increase (80%) lead to much lower correlations. However, we also notice that 

when the brightness:50 and brightness:80 transformations are applied, a large percentage of the images are rendered 

unusable for air quality estimation (the fail to pass the tests included in the heuristic sky localization approach), thus 

limiting the negative impact of these transformations on the accuracy of the ratios. Another interesting observation is 

that two of the transformations (sepia and art:incognito) lead to 100% of the images rendered unusable for air quality 

estimation.  

To provide a more detailed picture of the relationship between the ratios calculated from the original images and the 

ratios calculated from each type of transformed images, scatterplots of the original and transformed ratios are created 

for all 24 transformations and for both R/G and G/B ratio. Figure 25 shows scatterplots (the least squares regression 

line is also computed) of the R/G (left) and G/B (right) ratios calculated from original (x axis) and transformed images 

(y axis), for three transformations (w:200, brightness:20, improve). The rest of the scatterplots are shown in Figure 43 

of the Appendix. 

Table 5 – Pearson correlations between the R/G (2nd column) and G/B (3rd column) ratios of the original images and their 

transformed versions. The last column reports the percentage of images with no usable sky after each transformation. 

Transformation name R/G Pearson Correlation G/B Pearson Correlation % no computation 

w:400 0.99954 0.99982 4.6% 

w:300 0.99950 0.99981 18.4% 

w:200 0.99912 0.99931 33.3% 

w:100 0.99867 0.99488 66.7% 

brightness:20 0.81156 0.90529 26.4% 

brightness:50 0.36323 0.22414 60.9% 

brightness:80 0.08060 0.28798 82.8% 

saturation:20 0.98422 0.97547 23.0% 

saturation:50 0.92476 0.91021 41.4% 

                                                           
35 http://cloudinary.com/documentation/upload_images#eager_transformations  

http://cloudinary.com/documentation/upload_images#eager_transformations
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saturation:80 0.84728 0.72826 59.8% 

sepia - - 100.0% 

gamma 0.99984 0.99991 2.3% 

improve 0.90252 0.94631 29.9% 

auto_brightness 0.98085 0.99449 1.1% 

auto_contrast 0.97171 0.98146 6.9% 

auto_color 0.97543 0.99317 14.9% 

art:al_dente 0.79885 0.90745 18.4% 

art:eucalyptus 0.94662 0.97612 20.7% 

art:incognito - - 100.0% 

art:red_rock 0.15462 0.74757 35.6% 

art:zorro 0.99197 0.98892 17.2% 

art:primavera 0.91048 0.88283 36.8% 

art:athena 0.75699 0.93498 25.3% 

art:aurora 0.93227 0.95800 26.4% 

Average 0.83321 0.87893 35.5% 
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Figure 25 - Scatterplots of R/G (left) and G/B (right) scores calculated from original (x axis) and transformed images (y 

axis) for the w:200, brightness:20 and improve transformations. 

In conclusion, we found that both ratios are generally very robust against most transformations. Nevertheless, we also 

found that there are few transformations that cause a relatively large distortion on the original ratios. Ideally, we would 

like to be able to either discard images that have undergone these transformations or to apply filters that revert the 

impact of these transformations. Unfortunately, however, the Flickr API does not provide information about the 

transformations applied on an image. Therefore, discarding transformed images or reverting the transformations is a 
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highly non-trivial task that would require the development of specialized transformation detection algorithms. Given, 

the robustness of the ratios with respect to most transformations and the fact that our image collection framework 

also includes webcam images that are typically non-transformed, we decided to not pursue this research direction.  

3.3 Image Analysis Service  

3.3.1 Service Architecture 

During the reporting period (M9-M18), all the image analysis operations required for the extraction of R/G and G/B 

ratios from sky-depicting images were incorporated into an image analysis (IA) Java web service that accepts image 

analysis requests, carries out all the required processing, and responds with the results of the image analysis. The 

overall architecture of the service is shown in Figure 26. The service accepts HTTP post requests that specify either a 

set of local (to the server that runs the service) paths that correspond to images already downloaded on the server 

through one of the image collectors (Flickr or webcams) or a set of image URLs36. In the latter case, all images are first 

downloaded (using a multi-threaded image download implementation).  

The IA service uses internally three components, each one implementing a processing step of the image analysis 

pipeline, i.e. concept detection, sky localization and ratio computation. When an IA request is received, the IA service 

first sends a request to the concept detection (CD) component (step 1) which implements the concept detection 

framework described in D3.1. The CD component applies concept detection on each image of the request and returns 

a set of scores that represent the algorithm’s confidence that the sky concept appears in each image. When a response 

is received by the CD component, the IA service parses it to check which images are the most likely to depict sky based 

on the confidence scores calculated by the CD component (step 2). A relatively high (0.8) threshold is used to lower 

the probability of sending non-sky-depicting images for subsequent analysis. At step 3, the IA service sends a request 

to the sky localization (SL) component which implements the FCN-based sky localization framework described in D3.1. 

This is a computationally heavy processing step that is carried out on the GPU of the IA server. The response of the SL 

component is the sky mask of each image of the request. To minimize the time required for sending the masks to the 

IA service, a compression algorithm is first applied to reduce the size of the masks. Then, the IA service receives the 

response from the SL component (step 4) and sends a request to the ratio computation (RC) component (step 5). The 

RC component takes the sky masks computed by the FCN approach as input, refines them by applying the heuristic 

approach on top of them (see section 3.1) and computes the R/G and G/B ratios of each image (in case all checks of 

the heuristic approach are successfully passed). Finally, the IA service parses the response of the RC component (step 

6) and combines the results of all processing steps to synthesize the IA response (step 7). 

                                                           
36 This option was given so that the IA service can serve requests for images that do not reside on the image analysis server. 
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Figure 26 – Architecture of the image analysis service 

Figure 27 shows an example (POST) request to the IA service37 for three images and the corresponding response. We 

notice that the response contains different information for each image, depending on the results of the analysis. Since 

all images undergo concept detection, the confidence score for the concept sky is added to the response for all images 

(“sky_confidence” field) as well as a boolean flag (“containsSky” field) that is true if the confidence score for sky is ≥

0.8, false otherwise. In case no sky is detected, the response does not contain additional information about the image 

(this is the case for image “path1.jpg”). Otherwise, an additional boolean flag is added to the image (“usableSky” field) 

that is true if a usable sky region was detected in the image by the FCN+heuristic approach (this is the case for image 

“path3.jpg”), false otherwise (this is the case for image “path2.jpg”). Finally, in case a usable sky region is detected, 

the R/G and G/B ratios are added in the response along with the total number of pixels in the image (“all_pixels” field) 

and the number of pixels corresponding to usable sky (“sky_pixels” field)38.  

 

                                                           
37 http://[SERVICE-HOST]/ImageAnalysisService-v1/post/  

38 The addition of the “all_pixels” and “sky_pixels” fields was requested by DUTH to help with the tuning of the air quality 

estimation models. 

http://[SERVICE-HOST]/ImageAnalysisService-v1/post/
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Figure 27 – The body of an example (POST) request to the IA service (left) and the corresponding JSON response (right)r. 

3.3.2 Image Analysis Service Efficiency 

Besides the accuracy and the robustness of the image analysis service that were studied in sections 3.1 and 3.2, we 

also wanted to study its time efficiency and try to determine the maximum total number of images that can be 

processed by the service per hour for a given hardware configuration39. To this end, a set of 1,000 randomly selected 

Flickr images were submitted to the image analysis service and the time taken on each of the three processing steps 

as well as the total response time were recorded. 

Table 6 – Time efficiency characteristics of the IA service presents the results obtained when the default 0.8 confidence 

threshold is used (2nd column) as well as the results obtained when a 0 threshold is used so that all 1,000 images pass 

through all the processing steps (3rd column). Looking at the 3rd column, we notice that ratio computation is the most 

time-consuming step with 0.28 sec per image, followed by the sky localization step with 0.25 sec per images and the 

concept detection step with 0.15 sec per image. In practice, however, sky is not detected in all images (as shown in 

the next section, about 40% of the images pass the 0.8 threshold) and, as a result, sky localization and ratio 

computation are performed only in a subset of the images. This more realistic setting is shown in the 2nd column where 

we observe that, on average, most time is consumed in concept detection (0.15 sec) followed by ratio computation 

(0.11 sec) and sky localization (0.10 sec). As shown in the last row of Table 6 – Time efficiency characteristics of the IA 

service, when the default 0.8 confidence threshold is used the IA service requires only 0.39 sec per image on average. 

Based on these results, we conclude that with this hardware configuration, around 9,000 images per hour can be 

processed by the image analysis service. Finally, we should note that use of a latest generation GPU (e.g. NVidia 

                                                           
39 The image analysis service was set-up on a server running Linux (Ubuntu), equipped with 16Gb of RAM, an Intel i7-

3770K processor and an NVidia GeForce GTX 1070 GPU that is used by the sky localization service.  

 



D3.2: 2nd Environmental node discovery, indexing and data acquisition 

     47 | 79    

GeForce GTX 1070) is critical for achieving this level of efficiency, as without the use of the GPU the sky localization 

service takes over 4 sec per image. 

Table 6 – Time efficiency characteristics of the IA service. 

Processing step 
Avg. time per image (sec) 

Sky ≥ 0.8 

Avg. time per image (sec) 

Sky ≥ 0 

CD component 0.15 0.15 

SL component 0.10 0.25 

RC component 0.11 0.28 

IA service 0.39 0.71 

 

3.4 Image Analysis Statistics 

The IA service has been running since 1/3/2017, analyzing all the images that we collect with the updated version of 

the Flickr collector (which was deployed first) and the AMOS and webcams.travel webcam image collectors (which 

were deployed later). From 1/3/2017 until 15/05/2017 998,966 images have been analyzed from all sources and the 

results of the analysis have been stored in MongoDB along with basic metadata about each image such as location 

(latitude, longitude), taken timestamp and source. In this section, we present several statistics that we computed from 

this data. 

Table 7 shows the numbers of sky-depicting images collected from each source (i.e. images for which the concept 

detector outputs a confidence score >0.8) as well as the number images with usable sky (i.e. the subset of sky-depicting 

images that meet the criteria defined by the FCN+heuristic sky localization approach). We notice that, on average, 

18.46% of the collected images are sky-depicting, with the largest percentage observed in images collected from 

webcams.travel. We also notice that 9.25% of all the collected images contain a sky region that can be used for air 

quality estimation. Again, the largest percentage is observed in images from webcams.travel. 

Table 7 – Numbers and percentages of sky-depicting and usable sky images collected from each source.  

Source Total Sky Usable sky 

Flickr 424,785 67,642 (15.90%) 43,086 (10.14%) 

AMOS webcams 525,998 103,587 (19.69%) 42,318 (08.05%) 

webcams.travel 48,183 13,269 (27.53%) 7,010 (14.55%) 

Total 998,966 184,498 (18.46%) 92,414 (09.25%) 

 

Figure 28 shows the number of usable sky images collected per day in Europe. We see that after the integration of all 

image sources (beginning of May), the number of usable sky images that we collect increases to 1800 images per day 

across the whole Europe. Figure 29 shows the daily number of usable images in the two countries of the pilots, 

Germany and Norway. We notice that the average daily number of usable sky images in May is ≈106 for Germany and 

≈271 for Norway. Thus, in both cases, we significantly surpass the lower limit of 50 measurements per country that 

are needed by the data fusion module, as described in D4.1.  
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We also wanted to study the differences between the average daily values of the R/G and G/B ratios. Figure 30 plots 

the average daily values of the R/G and G/B ratios, while Figure 31 presents a scatterplot of the daily averages. We 

observe that the two ratios are highly correlated, with G/B being consistently higher than R/G. 

 

 

 

Figure 28 – Daily number of usable sky images in Europe (the increasing trend is due to the addition of webcam images). 

 

 

Figure 29 – Daily number of usable sky images in Germany and Norway. 
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Figure 30 – Daily R/G vs G/B averages. 

 

 

Figure 31 – Scatterplot of average daily R/G and G/B ratios. 
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3.5 Visualization of Image Collection & Analysis 

To facilitate easy inspection of the collected images, their geographical distribution, and the output of the image 

analysis module for each image, we built a web application40 that plots the collected images (within the last 24 hours) 

as markers on a map, in a similar manner as we do for visualizing air quality measurements from official sources. Figure 

32 shows two screenshots of the application. We see that the application offers three ways of filtering the results: a) 

based on country (initially results from all European countries are shown), b) based on image source (Flickr/Webcams) 

and c) based on the results of the image analysis, i.e. the user can ask only sky-depicting or only usable sky images to 

be shown. To reduce the clutter caused by the high number of markers, marker clustering is implemented. When an 

individual marker is clicked, a pop-up window opens that shows all the details of the image (see left side of Figure 32). 

On the top of the pop-up window there is thumbnail of the image that links to the original image source. We can also 

see the source of the image, the exact date and time it was taken, the concept detection scores and whether a usable 

sky was detected or not. In case a usable sky was detected, the calculated R/G and G/B ratios are also displayed, as 

well as the number of sky pixels and the number of total pixels in the image. 

The front-end of the application is implemented in HTML/CSS and JavaScript, while on the back-end there is REST a 

web service that accepts requests of the form: 

 http://[SERVICE-HOST]/crawl/images?place=greece&hasSky=true&usableSky=true&source=flickr,webcams-

travel  

and returns a JSON response of the form shown in Figure 33. The web service basically transforms the requests in 

MongoDB queries that it executes and then formats appropriately as a JSON response. Note that a geospatial 

MongoDB index is used to efficiently perform geographical queries (when results from a specific country are 

requested). In particular, a bounding box is defined for each country and all images whose coordinates lie inside the 

corresponding bounding box are returned.  

 

 

Figure 32 – Screenshots of the image collection and analysis visualization web application. 

                                                           
40 http://hackair-mklab.iti.gr/map 

http://[SERVICE-HOST]/crawl/images?place=greece&hasSky=true&usableSky=true&source=flickr,webcams-travel
http://[SERVICE-HOST]/crawl/images?place=greece&hasSky=true&usableSky=true&source=flickr,webcams-travel
http://hackair-mklab.iti.gr/map
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Figure 33 – Example response of the REST web service that supports the image collection and visualization application. 
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4 Twitter-based air quality estimation 
This section presents an experimental line of work that investigates the possibility of making air quality estimations 

based on the analysis of content posted on Twitter. Although generating estimations of this type was not foreseen in 

the initial planning of the project, we were motivated to explore air quality estimation approaches that are 

complementary to the image-based approach, which is considered as the primary approach based on opportunistic 

social media and web content sensing.  This was due to the fact that a) there are several cases where images cannot 

lead to any estimation (e.g. cloudy conditions during the whole day around a location), b) having a second option for 

performing air quality estimations could potentially benefit the overall reliability of the platform outputs. Some 

preliminary evidence on the feasibility of estimating air quality based on analysis of microblogging content has been 

provided by a few recent works, e.g. (Mei et al., 2014), (Jiang et al., 2015), (Wang et al., 2015), (Tao et al., 2016), that 

studied the correlation of air quality in China with the content posted in Sina Weibo41 (often called the Chinese 

Twitter). Here, we report some promising results that we obtained in initial experiments that we conducted on this 

topic. However, we highlight that image-based estimations remain the primary type of air-quality estimations within 

the hackAIR platform and Twitter-based estimations might be used as a complementary and experimental approach 

that needs considerable further investigation and testing before being deployed in the platform. 

4.1 Methodology 

Our efforts are grounded on the assumption that the tweets posted at a specific location can provide information 

about (exhibit statistical correlations with) the current air quality levels at this location. Based on this assumption, we 

investigated the possibility of using machine learning methods to build coarse reliable city-level air quality estimation 

models based on Twitter posts. In particular, we focus on estimating current PM10 and PM2.5 levels, for cities without 

official air quality measurement stations. To accomplish this task, we develop a transfer learning framework where 

prediction models are trained using data from nearby cities (for which both Twitter data and official air quality 

measurements are available) and then transferred to the cities of interest (for which only Twitter data is supposedly 

available).  

More formally, let 𝐷 = {𝐷𝑐1
, … , 𝐷𝑐𝑀

}, denote a set of 𝑀 city-specific datasets 𝐷𝑐𝑗
= {(𝒙𝑐𝑗

1 , 𝑦𝑐𝑗
1 ), … , (𝒙𝑐𝑗

𝑁 , 𝑦𝑐𝑗
𝑁)} where 

𝒙𝑐𝑗
𝑖  is a vector of predictive variables (or features), each one providing a potentially useful (in the sense that it is 

correlated with the dependent variable) summary statistic of the Tweets posted around city 𝑐𝑗 during a fixed length 

time period (more details about the features used are provided in Section 4.3), and 𝑦𝑐𝑗
𝑖  be the average value of the 

pollutant at the same time period.  Our goal is to use one or more of the datasets in 𝐷 in order to learn a 

function ℎ: 𝑿 → 𝑌, that given a feature vector 𝒙𝑐𝑞
 calculated from a city 𝑐𝑞 without measurements stations will be 

able to accurately estimate the unknown pollutant value 𝑦𝑐𝑞
. 

4.2 Data Collection 

To carry out experiments according to the previously defined prediction task, we need to collect Twitter data (to 

facilitate the creation of feature vectors 𝒙) and the corresponding pollutant values (the dependent variable 𝑦) for a 

set of (relatively) closely located cities. To simplify the task, we focus only on the English language and select five cities 

in the UK (London, Liverpool, Manchester, Birmingham and Leeds). To simulate the previously described transfer 

learning scenario, each city is in turn considered as test city (hypothetically without official air quality measurements) 

and all the remaining cities are used for training. In this set of preliminary experiments, we collected data for a time 

                                                           
41 https://en.wikipedia.org/wiki/Sina_Weibo 

https://en.wikipedia.org/wiki/Sina_Weibo
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period of approximately 3.5 months42  (1/2/2017 until 16/5/2017). The details of data collection are provided in 

Sections 4.2.1 (Twitter data collection) and 4.2.2 (ground station measurements collection). 

4.2.1 Twitter Data Collection 

Twitter data is collected using the Twitter Streaming API43. The Streaming API offers real-time access to a sample of 

the public data that are posted on Twitter. Once applications establish a connection to the streaming endpoint, they 

are granted access to a feed of tweets. Twitter streaming volume is not constant. Throughout the course of a 24-hour 

period, there is a natural ebb and flow to the number of tweets delivered per second. Twitter documentation does 

not mention the fraction of the total number of tweets that are retrieved in every time slot. 

There are two main methods to query the Streaming API. The first method (location-based44) allows the retrieval of 

geotagged tweets around an area of interest by specifying bounding box coordinates. The second method (keyword-

based45) retrieves both geotagged and non-geotagged tweets based on a specified list of keywords. Ideally, we would 

like to combine the two methods in order to retrieve tweets that contain air quality-related keywords and, at the same 

time, are located in the areas (cities) of interest. Unfortunately, the API does not allow the combination of the two 

methods. Therefore, the are two alternatives: a) retrieve tweets using the location-based method and then perform 

keyword-based filtering, b) retrieve tweets using the keyword-based method and then perform location-based 

filtering.  

Experimenting with the first approach, we noticed that the number of tweets that we retrieve for the locations of 

interest is very low (approximately 150 tweets per day). This is justified by the fact that only a small fraction of the 

total number of tweets (<5%) are geolocated46. Thus, we focused on the second approach. In particular, we use the 

keyword-based approach to track a list47 of 120 English keywords related to air pollution (composed collaboratively 

with other project partners) and store all the returned tweets48. 

Keyword-based retrieval implies that most of the returned tweets will not be geolocated. Thus, to take advantage of 

the much higher volume of non-geolocated tweets, we took the assumption that, in most cases, the tweet location 

will match the location that the user has specified in his/her Twitter account. To this end, the LM-based multimedia 

geotagging method presented in Section 2.1.2 was employed to assign exact geographical coordinates to the textual 

description of the user’s location. Using this approach, we can recover the city corresponding to the Twitter location 

of significantly more users than we would be able to recover with a trivial text matching approach because location 

descriptions referring to well-known districts or boroughs can also be assigned an exact location. 

To evaluate the accuracy of the inferred locations, we exploited the place field49. This field is assigned to tweets 

whenever users want to incorporate non-precise location information in their tweets. In that case, Twitter provides 

recommendations about nearby locations using the device’s IP or exact geographical coordinates (if available) and 

users can choose their preferred location. Although this location might not always correspond to the actual tweet 

location (as users can freely choose any location), we expect that it will be very strongly correlated with the actual 

                                                           
42 Note that data collection will be continued with the aim to expand the dataset to a period that spans at least one year in order to 

avoid seasonal effects and achieve better time invariance.  

43 https://dev.twitter.com/streaming/overview  

44 https://dev.twitter.com/streaming/overview/request-parameters#locations  

45 https://dev.twitter.com/streaming/overview/request-parameters#track  

46http://firstmonday.org/article/view/4366/3654    

47 https://docs.google.com/spreadsheets/d/1FIumUHdfHUZbArJ-CnpuwPu7-riMeMijYsHJZtzTQ-Q/edit#gid=0  

48 We also use the language parameter of the API to ensure that only tweets written in English will be returned. 

49 https://dev.twitter.com/overview/api/places  

https://dev.twitter.com/streaming/overview
https://dev.twitter.com/streaming/overview/request-parameters#locations
https://dev.twitter.com/streaming/overview/request-parameters#track
http://firstmonday.org/article/view/4366/3654
https://docs.google.com/spreadsheets/d/1FIumUHdfHUZbArJ-CnpuwPu7-riMeMijYsHJZtzTQ-Q/edit#gid=0
https://dev.twitter.com/overview/api/places
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tweet location in most cases. Moreover, the place field is available for a much larger number of tweets compared to 

those with precise location and was therefore considered more suitable for evaluating the accuracy of the inferred 

locations. As we can see in Figure 34, the top 10 locations (according to the place field) of the tweets of which the 

inferred location is London, are indeed referring to London. Although a small number of tweets are assigned a wrong 

location using the above approach, we found that this is preferable compared to basing our estimations on a much 

smaller number of accurately geolocated tweets.  

 

Figure 34– Top 10 place fields from tweets assigned to London 

Figure 35 shows the number of tweets that are retrieved daily from each city using the previously described 

approach for a period of 3.5 months, while Table 8 reports the average daily number of tweets per city. As expected, 

there is a strong correlation between city populations and numbers of retrieved tweets. 

 

Figure 35 – Number of tweets retrieved daily for each city. 
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Table 8 – Daily average number of tweets retrieved per city. 

City Avg.  number of daily tweets retrieved 

London 3,240 

Manchester 385 

Liverpool 140 

Birmingham 303 

Leeds 105 

 

4.2.2 Collection of Ground Station Measurements 

In order to collect ground truth PM10 and PM2.5 measurements for the cities of interest we use the OpenAQ API 

(already described in Section 2.3). In particular, we use the https://api.openaq.org/v1/measurements endpoint50 to 

retrieve hourly historical measurements from all stations located in each city of interest by appropriately setting the 

city, date_from and date_to parameters. Table 9 shows the number of stations from which measurements of each 

pollutant are available for each city. To calculate a single hourly measurement for each city, we average the 

measurements of the respective stations, without considering outlier values (values that deviate more than three 

standard deviations from the corresponding city mean51) which are likely a result of sensor or API failures. Figure 36 

shows the daily means of PM10 and PM2.5 in the city of London52. We observe that the values of the two pollutants 

exhibit very similar trends (the Pearson correlation is 0.96) and the situation is similar in all cities. In the following 

sections, we report results only for PM10 since very similar results are obtained for PM2.5. 

Table 9 - Numbers of air pollution stations per city 

Location Ground stations with PM10 Ground stations with PM2.5 

London 10 9 

Manchester 2 3 

Liverpool 1 2 

Birmingham 2 2 

Leeds 2 2 

 

In addition to the correlations between PM10 and PM2.5, we also measured the correlations between daily PM10 

values in different cities. Figure 37 shows the daily PM10 means of London, Manchester and Liverpool. As expected, 

similar air pollution trends are observed (especially for the cities of Manchester and Liverpool which lie closer to each 

other), suggesting that it is reasonable to attempt model transfer between nearby cities. This can be seen more clearly 

in Figure 38 which shows the scatterplot of the distances and corresponding PM10 correlations of all distinct city pairs. 

Clearly, the smaller the distance between two cities, the higher the correlation between their PM10 values. 

                                                           
50 https://docs.openaq.org/#api-Measurements  

51 Indicatively, in a period of 3.5 months 33 measurements were rejected in London. 

52 The discontinuities in the plot are due to the fact that the OpenAQ API does not provide measurements for all time periods.  

https://api.openaq.org/v1/measurements
https://docs.openaq.org/#api-Measurements
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Figure 36 – Daily PM10 and PM2.5 means in London. 

 

 

Figure 37 - Daily PM10 means in London, Manchester and Liverpool. 
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Figure 38 – Scatterplot of distances and PM10 correlations between cities in the UK. 

In most of our experiments, we adopt a classification instead of a regression formulation of the air quality prediction 

task, i.e. we predict pollution classes instead of exact PM10/PM2.5 values, because in preliminary experiments we 

found that such a formulation leads to better performance. As a result, the continuous dependent variable 𝑦 

(corresponding to exact PM10/PM2.5 values) is transformed to a discrete variable (where each level corresponds to a 

different pollution class) according to Table 3. 

4.3 Predictive Feature Generation 

In this section, we describe the various predictive features that we generated from the collected Twitter data. Our goal 

is to generate features that provide a descriptive summary of the tweets posted around a specific city during a fixed 

period of time (timestep), and at the same time exhibit strong correlations with the target variable (PM10/PM2.5). For 

our experiments, each day is divided into four 6-hour timesteps and features are computed over all tweets posted 

during the respective timestep to generate the feature vector 53. In total, we generated 54 different features which 

are summarized in Table 10. 

Table 10 - Predictive features. 

No Feature name Description 

1 smog Number of tweets that contain the word "smog" 

2 emissions Number of tweets that contain the word "emissions" 

3 airpollution Number of tweets that contain the phrase "air pollution" 

4 pollutionalert Number of tweets that contain the phrase "pollution alert" 

5 tweetsNo Total number of tweets 

6 AQ_D Estimated number of tweets related to air quality (AQ_Discussion) 

                                                           
53 The corresponding target variable 𝑦 is computed by taking the mean of the hourly pollutant values. 
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7 AQ_S Estimated number of tweets with information on current air quality (AQ_Sense) 

8 low Estimated number of AQ_S tweets referring to low pollution (AQ_Severity) 

9 high Estimated number of AQ_S tweets referring to high pollution (AQ_Severity) 

10 active_day 1 if timestep is in an active day (Mon, Tue, Wed, Thur), 0 otherwise 

11 active_hour 1 if timestep contains active hours (9:00 - 24:00), 0 otherwise 

13 rolling_mean_[FEATURE]_[N] The mean value of feature [FEATURE] for the [N] previous timesteps 

14 [FEATURE]_[N] The value of feature [FEATURE] [N] timesteps in the past 

15 [FEATURE]_future_[N] The value of feature [FEATURE] [N] timesteps in the future 

12 mean_[PM10/PM2.5]_nearby The distance-weighted PM10/PM2.5 mean from nearby cities  

 

Features #1-4 correspond to the numbers of tweets in each timestep that contain specific words or phrases associated 

with bad air quality conditions (i.e. “smog”, ‘’emissions”, “air pollution”, “pollution alert”). Since tweets are collected 

using air quality related keywords, we expect that the total number of tweets in each timestep (feature #5) might 

provide useful information with respect to air quality in the respective timestep (i.e. we expect more air quality related 

tweets to be posted when the air quality is bad).  

In addition to these simple features, we also used four advanced features (#6-9) which are generated by utilizing the 

outputs of different tweet classifiers to obtain estimates of the numbers of tweets (in each timestep) that: a) discuss 

about air quality54 (feature #6), b) provide information about current air quality (feature #7) c) refer to low air pollution 

(feature #8), d) refer to high air pollution (feature #9). Some details about the classifiers used to generate the above 

features are provided in Table 11. The first classifier (AQ_Discussion) is built using a training set of 600 tweets, manually 

labelled as relevant/irrelevant with air quality. The second classifier (AQ_Sense) is built using a training set of 600 

tweets, manually labelled with respect to whether they provide information about current air quality levels (relevant) 

or not (irrelevant). The third classifier (AP_Severity) is built using a training set of 200 tweets, manually labelled with 

respect to whether they refer to high (relevant) or low (irrelevant) current air pollution levels. In all cases, tweets were 

preprocessed by applying stemming and stop-word removal and represented using a tf-idf bag-of-words 

representation. As classification algorithm, we used L2-regularized L2-loss Support Vector Machine (the LibLinear55 

implementation) with default parameters.  

Table 11 – AQ_General, AQ_Sense and AP_Severity classifier details. 

Classifier # examples # relevant # irrelevant Precision Recall 

AQ_Discussion 600 350 250 90.6% 91.2% 

AQ_Sense 600 200 400 88.4% 89.9% 

AP_Severity 200 100 100 80.4% 81.7% 

 

In Table 11, we can also see the classification performance of the three classifiers in terms of precision and recall 

(measured by applying 10-fold cross-validation on the respective training set). We notice that, in all cases, both 

precision and recall are higher than 80%. This suggests that the estimates generated using the outputs of these 

classifiers (features #6-9) will be quite representative of the actual numbers. Table 21 and Table 22 of the Appendix, 

show examples of tweets classified as relevant by the AQ_Discussion and the AQ_Sense classifier respectively, while 

                                                           
54 Although tweets are collected with air quality related keywords, still many tweets irrelevant with air quality are retrieved. 

55 https://www.csie.ntu.edu.tw/~cjlin/liblinear/  

https://www.csie.ntu.edu.tw/~cjlin/liblinear/
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Table 23 and Table 24 of the Appendix, show examples of tweets classified by the AP_Severity classifier as High and 

Low respectively. 

In Figure 39 we plot the daily numbers of London tweets classified as relevant/irrelevant by the AQ_Discussion classifier 

(AQ_D/Irrelevant), classified as relevant by the AQ_Sense classifier (AQ_S) and classified as relevant/irrelevant by the 

AP_Severity classifier (High/Low). We notice that a considerable number of tweets irrelevant with air quality are 

retrieved. Moreover, we see that, as expected, the number of AQ_S tweets is always smaller than the number of AQ_D 

tweets and that the majority of AQ_S tweets are classified as related to high air pollution. This can be explained by the 

fact that the list of keywords used for querying the Twitter API is primarily oriented towards bad air quality conditions 

and by the fact that people tend to tweet more about bad air quality. 

 

 

Figure 39 – Daily numbers of AQ_D, AQ_S, High, Low and Irrelevant tweets in London. Irrelevant refers to tweets 

classified as irrelevant by the AQ_Discussion classifier. 

Examining the daily and hourly distributions of the collected tweets (Figure 40) we notice that, in all cities, significantly 

less tweets are posted towards weekends and during night hours. Thus, to make the models take this information into 

account, two additional features were created (features #10,11). Feature #10 is set to 1 if the timestep belongs to an 
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active day (Monday, Tuesday, Wednesday or Thursday) and is set to 0 otherwise. Feature #11 is set to 1 if the timestep 

contains active hours (9:00 - 24:00) and is set to 0 otherwise. 

 

Figure 40 - Daily and hourly tweet distributions. 

Besides the basic versions of features #1-9 which correspond to descriptive statistics of the tweets posted in the 

current timestep, we also generated lagged and rolling mean versions of the features. Such features are commonly 

used in timeseries prediction problems to account for temporal dependencies between the dependent variable and 

the independent variables that go beyond the current timestep. A lagged version of a feature consists of the value of 

that feature 𝑛 timesteps in the past while a rolling mean version of a feature is the average value of that feature during 

the previous 𝑛 timesteps. Since we are interested in making predictions not only for the current timestep but also for 

few timesteps in the past, we also generate future versions of the features, which correspond to the values of those 

feature 𝑛 timesteps in the future. Features of this type are expected to be quite important since a lag is expected 

between the time that someone experiences bad air quality conditions until he/she tweets about it. Up to four 

timesteps in the past are considered for rolling mean and lagged features and up to two timesteps in the future are 

considered for future features. Although potentially helpful, considering more than two timesteps ahead would imply 

that estimations would have to be provided with a delay larger than 12 hours. 

Finally, to let models take into account the air pollution levels in nearby cities (for which we assume that official air 

pollution measurements are available) we use a non-Twitter feature (#12) that corresponds to the distance-weighted 

average pollution levels (PM10/PM2.5) in nearby cities56. For a city 𝑐𝑗, this distance-weighted average is calculated as:  

∑

1
𝑑(𝑐𝑗 , 𝑐𝑖)

∑
1

𝑑(𝑐𝑗, 𝑐𝑖)
𝑚
𝑖=1,𝑖≠𝑗

𝑚

𝑖=1,𝑖≠𝑗

 𝑝𝑐𝑖
 

where 𝑝𝑐𝑖
 is the pollutant value in the nearby city 𝑐𝑖 and 𝑑(𝑐𝑗, 𝑐𝑖) is the distance between the two cities, i.e. the weight 

of each nearby city 𝑐𝑖 is set equal to the inverse of its distance from 𝑐𝑗, divided by the sum of the inverse distances of 

all nearby cities (to make weights sum up to 1). This feature is similar to deterministic spatial interpolation techniques 

for PM10 prediction (Taheri Shahraiyni & Sodoudi, 2016). 

Figure 41 shows the observed correlations between PM10 and each of the basic features (#1-9,12) when all cities are 

jointly considered (feature-feature correlations are also presented). We observe that in both cities, the distance-

                                                           
56 Lagged versions of this feature are also considered. 
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weighted average PM10 in nearby cities exhibits a very high positive correlation with the target, followed by smog, 

high and AQ_S which also exhibit relatively high positive correlations with the target. On the other hand, features such 

as low and emissions exhibit a negative correlation. 

 

Figure 41 - Feature correlations 

4.4 Air Quality Estimation Experiments 

In this section, we present our experimental results. We build and evaluate models that predict the PM1057 pollution 

class (see Table 3) and use Accuracy (the percentage of correct classifications) and Area Under ROC (AUC) as 

classification performance metrics. Both Accuracy and AUC are standard classification metrics, with AUC being more 

suitable for imbalanced classification problems. As formulated here, air quality prediction is an imbalanced 

classification problem since the very good and good pollution classes are observed much more frequently than the 

medium and bad pollution classes in the studied cities. As classification algorithm, we use Stochastic Gradient Boosting 

(Friedman, 2001) (an implementation from scikit-learn58 in all our experiments59. As a baseline, we use a classifier that 

always predicts the most frequent class (majority-always classifier). Finally, to facilitate model transfer across cities, 

all variables (both features and target) are standardized before model training. 

4.4.1 One-to-one vs Many-to-one Models 

In the first experiment, we compare the performance of models built using a single city-specific dataset for training 

with the performance of a model that is trained on a dataset that combines all city-specific datasets (excluding of 

course the dataset of the city for which predictions are made). The results of this experiment are presented in Table 

12 (Accuracy) and Table 13 (AUC). We observe that, for most cities, the best performance is obtained using the many-

to-one approach (except for Birmingham when considering Accuracy using only Manchester for training leads to better 

performance). Therefore, we use the many-to-one approach for the rest of the experiments. Comparing the 

performance across cities, we see that London is predicted with significantly lower accuracy. This is probably related 

to the fact that London is far from all other cities that we consider and is therefore difficult to predict its air pollution 

                                                           
57 Identical experiments have been conducted with PM2.5-based pollution classes, leading to similar results. 

58 http://scikit-learn.org  

59 Random forest (Breiman, 2001) was also tested but exhibited slightly inferior performance. 

http://scikit-learn.org/
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based on data from the other cities. We also notice that the best performance obtained on each city is significantly 

better than the performance of the majority-always classifier. 

Table 12 - One-to-one vs many-to-one (Accuracy). 

Accuracy London Manchester Leeds Liverpool Birmingham Average 

London - 0.636 0.667 0.626 0.607 - 

Manchester 0.584 - 0.815 0.832 0.822  

Leeds 0.624 0.808 - 0.802 0.781 - 

Liverpool 0.590 0.844 0.798 - 0.760 - 

Birmingham 0.539 0.826 0.798 0.805 - - 

Best one-to-one 0.624 0.844 0.815 0.832 0.822 0.787 

Many-to-one 0.628 0.848 0.828 0.844 0.804 0.790 

Majority-always 0.533 0.664 0.610 0.680 0.574 0.612 

 

Table 13 - One-to-one vs many-to-one (AUC). 

AUC London Manchester Leeds Liverpool Birmingham Average 

London - 0.824 0.870 0.893 0.804 - 

Manchester 0.633 - 0.865 0.952 0.869 - 

Leeds 0.667 0.925 - 0.930 0.914 - 

Liverpool 0.646 0.948 0.850 - 0.870 - 

Birmingham 0.621 0.910 0.824 0.899 - - 

Best one-to-one 0.667 0.948 0.870 0.952 0.914 0.870 

Many-to-one 0.691 0.952 0.936 0.953 0.932 0.893 

Majority-always 0.500 0.500 0.500 0.500 0.500 0.500 

 

4.4.2 Feature Selection Experiments 

Classification algorithms tend to induce models that focus on features that exhibit high correlations with the target 

variable. While this characteristic is appropriate for a typical classification problem setup, it is not very suitable under 

dataset shift, i.e. classification problems where the distribution of the test data is different from the distribution of the 

training data. This is the case with the problem that we deal with here, since models are tested on different cities than 

the cities they are trained on. To deal with this problem, we apply feature selection to keep features that are both 

strongly but also consistently correlated with the target across different cities. To this end, we propose the following 

feature selection metric that simultaneously considers average correlation and stability of the correlation across cities 

(S&C): 

max
𝑓𝑗∈𝐹

1
𝑁

∑ |𝑐𝑜𝑟𝑐𝑖
(𝑓𝑗)|𝑁

𝑐𝑖=1

𝑣𝑎𝑟(𝑐𝑜𝑟𝑐𝑖
(𝑓𝑗))
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where 𝑐𝑜𝑟𝑟𝑐𝑖
(𝑓𝑗)  denotes the correlation (Pearson correlation) of feature 𝑓𝑗  with the target for the city 𝑐𝑖  and 

𝑣𝑎𝑟(𝑐𝑜𝑟𝑐𝑖
(𝑓𝑗)) is the variance of the correlation of feature 𝑓𝑗  across different cities. In addition to the proposed S&C 

metric we also experiment with the following feature selection metrics: 

• min
𝑓𝑗∈𝐹

𝑣𝑎𝑟(𝑐𝑜𝑟𝑐𝑖
(𝑓𝑗)), stability only (Sonly) 

• max
𝑓𝑗∈𝐹

1

𝑁
∑ |𝑐𝑜𝑟𝑐𝑖

(𝑓𝑗)|𝑁
𝑐𝑖=1 , correlation only (Conly) 

• max
𝑓𝑗∈𝐹

|𝑐𝑜𝑟𝑐𝑖
(𝑓𝑗)|, correlation only, city agnostic (Conly_a) 

Sonly prefers features that exhibit similar correlations across all cities, without taking the strength of the correlation 

into account. Conly, on the other hand, prefers features that are highly correlated with the target in all cities (on 

average), without considering stability. Similarly, Conly_a considers only the strength of the correlation but in a city 

agnostic manner as it ignores the fact that examples come from different cities. 

To evaluate the impact of feature selection on model accuracy, we apply each feature selection metric to select 20 features60 and 

features60 and compare the obtained performance with no feature selection. The results are presented in Table 14 and Table 15 

for Accuracy and AUC respectively. We see that in most cities, feature selection leads to better results than no selection. 

Comparing the feature selection metrics with each other, we notice that S&C outperforms the rest of the metrics in three out of 

five cities for both Accuracy and AUC and it also obtains the best average performance that is better than the average 

performance of no selection. To give a better idea of the type of errors made by the S&C many-to-one model (the best performing 

model),  

Table 16 and Table 17 show the confusion matrices that we obtain for London and Manchester. 

 

Table 14 – Comparison of feature selection metrics (Accuracy) 

Accuracy London Manchester Leeds Liverpool Birmingham Average 

S&C 0.625 0.851 0.832 0.855 0.835 0.800 

Sonly 0.609 0.862 0.826 0.841 0.802 0.788 

Conly 0.619 0.839 0.814 0.834 0.820 0.785 

Conly_a 0.614 0.839 0.824 0.844 0.815 0.787 

No selection 0.628 0.848 0.828 0.844 0.804 0.790 

Majority 0.533 0.664 0.610 0.680 0.574 0.612 

Table 15 - Comparison of feature selection metrics (AUC) 

AUC London Manchester Leeds Liverpool Birmingham Average 

S&C 0.709 0.952 0.940 0.953 0.924 0.896 

Sonly 0.673 0.950 0.913 0.948 0.916 0.880 

Conly 0.703 0.951 0.931 0.942 0.934 0.893 

Conly_a 0.698 0.942 0.932 0.954 0.934 0.892 

No selection 0.691 0.952 0.936 0.953 0.932 0.893 

                                                           
60 The top-20 features selected with each metric are shown in Table 25 of the Appendix. 
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Majority 0.500 0.500 0.500 0.500 0.500 0.500 

 

Table 16 - Confusion matrix for London 

London 

 
Predicted 

Very good Good Medium Bad 

A
ct

u
al

  

Very good 133 10 0 0 

Good 103 93 2 0 

Medium 2 14 6 0 

Bad 0 5 3 0 

Table 17 - Confusion matrix for Manchester 

Manchester 

 
Predicted 

Very good Good Medium Bad 

A
ct

u
al

 

Very good 193 33 0 0 

Good 16 87 3 0 

Medium 0 0 6 0 

Bad 0 0 0 0 

  

4.4.3 Contribution of Twitter-based Features 

Among the features that we generated, the distance-weighted average pollutant values from nearby cities 

(mean_PM10_nearby) exhibit very high correlations with the target variable while Twitter-based features have 

relatively weaker correlation. To study the impact that each type of features has on final performance, in this 

paragraph we build models that take only one type of features into account (i.e. only mean_PM10_nearby features or 

only Twitter-based features) and compare their performance to the performance of the S&C many-to-one model. The 

results are presented in Table 18 (Accuracy) and Table 19 (AUC). We observe that models based only on 

mean_PM10_nearby features perform significantly better than models based only Twitter-based features. When both 

types of features are jointly considered, however, the performance improves further, especially in terms of Accuracy. 

Table 18 - Accuracy obtained with Twitter-based vs mean_PM10_nearby vs all features 

Accuracy London Manchester Leeds Liverpool Birmingham Average 

Twitter-based 0.430 0.603 0.505 0.639 0.621 0.560 

mean_PM10_nearby 0.569 0.841 0.814 0.824 0.823 0.774 

All features 0.625 0.851 0.832 0.855 0.835 0.800 
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Table 19 - AUC obtained with Twitter-based vs mean_PM10_nearby vs all features 

AUC London Manchester Leeds Liverpool Birmingham Average 

Twitter-based 0.603 0.635 0.596 0.676 0.750 0.625 

mean_PM10_nearby 0.691 0.952 0.936 0.953 0.932 0.893 

All features 0.709 0.952 0.940 0.953 0.924 0.896 

 

Finally, the performance of the models is compared in a regression setup61, i.e. when PM10 values are directly 

predicted instead of pollution classes, using Mean Squared Error (MSE) as the performance metric. As shown in Table 

20 and in accordance with the previous results, we observe than models based on mean_PM10_nearby  features make 

significantly smaller errors than models based on Twitter-based features, while the best results are obtained when all 

features are jointly considered. To better illustrate the improvements incurred by the combination of Twitter-based 

and mean_PM10_nearby features over using mean_PM10_nearby features alone, Figure 42 plots the daily PM10 

values for the city of Manchester (where the largest gains are obtained when all features are combined) against the 

estimated values when either all or only the mean_PM10_nearby features are used. 

Table 20 - MSE obtained with Twitter-based vs mean_PM10_nearby vs all features 

MSE London Manchester Leeds Liverpool Birmingham Average 

Twitter-based 0.65 1.00 0.98 1.05 0.96 0.92 

mean_PM10_nearby 0.40 0.20 0.19 0.21 0.20 0.24 

All features 0.39 0.14 0.19 0.16 0.18 0.21 

 

                                                           
61 Here we use a Stochastic Gradient Boosting regressor. 
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Figure 42 - Regression with and without Twitter-based features in Manchester 
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5 Conclusions 
This deliverable concluded the research and development activities that concern the collection and indexing of 

environmental nodes (T3.1) as well as the acquisition and processing of user-generated images for air quality 

prediction (T3.2), having led to the delivery of a variety of data collection modules (Flickr images, webcam images, air 

quality measurements from ground stations) and a comprehensive image analysis service that conducts the necessary 

processing steps in order to deliver the inputs required by the air quality estimation models developed within T3.3. 

As far as image collection is concerned, an important development compared to D3.1 was the expansion of its 

geographical scope to the whole European continent instead of only specific cities in Germany and Norway (the 

countries of the hackAIR pilots). The decision of the expansion was taken jointly with all project partners and aims at 

increasing the number and the geographical spread of image-based estimations that are given as input to the data 

fusion module, thus improving the quality and breadth of its outputs. To this end, an improved version of the Flickr 

image collector was developed which retrieves all Flickr images that are geotagged in Europe by appropriately querying 

the Flickr API. Besides the expanded geographical scope, the new version of the Flickr collector includes additional 

improvements such as the rejection of images with uncertain date taken timestamps and a better mechanism for 

handling queries that return a very large number of results. As a result, approximately 5,000 Flickr images are collected 

daily. 

In addition to these improvements, a number of ways to further increase the number of images that we collect where 

investigated. Firstly, two very large repositories of webcam images were analyzed, AMOS and webcams.travel. Both 

repositories were found to contain a significant number of webcams located in Europe and, at the same time, offer a 

relatively simple way of retrieving images and other required information (location and time) from them. 

Consequently, two specialized collectors were implemented, facilitating the collection of images from approximately 

3,500 different locations at regular time intervals. Moreover, a set of experiments were conducted to investigate the 

feasibility of exploiting non-geotagged Flickr images, which represent the vast majority of images on Flickr (and other 

social image sharing platforms). More specifically, a recent state-of-the-art location estimation approach was 

evaluated in terms of its ability to accurately estimate the location of non-geotagged Flickr images based on textual 

metadata such as title, description and tags. Experiments conducted on a large-scale collection of approximately 

200,000 images, showed that the location of a large percentage of non-geotagged images can be accurately estimated. 

Thus, a large additional number of Flickr images62 could be included in the hackAIR system, provided that some small 

uncertainty with respect to their capture location is permissible.  

Besides the collection of images, the collection of air quality measurements was also expanded to the whole Europe. 

To this end, an environmental data collection module was implemented that retrieves data from the OpenAQ platform 

which provides PM10 and PM2.5 measurements from a large number of environmental stations in Europe. The 

collected data cover the majority of European countries, including the countries were the hackAIR pilots will take place 

(Germany and Norway), are very frequently updated, and come from official, government-level sources such as EEA 

and DEFRA. In addition, a web-based visualization interface of the data was implemented which facilitates a quick 

overview of the current air quality conditions (in terms of PM10 and PM2.5). 

As far as the techniques for processing user-generated images is concerned, this deliverable includes a comprehensive 

performance evaluation of the techniques developed during the first year of the project, which are documented in 

D3.1. In particular, we performed an air quality estimation-oriented evaluation of the accuracy of the two alternative 

sky localization approaches (FCN and heuristic) using the help of image-based air quality estimation experts. This 

evaluation highlighted the complementarity of the two approaches and led to the development of a new approach 

                                                           
62 Up to about 40,000 images based on rough estimations regarding the number of non-geotagged images that are actually captured 

in Europe (160,000) and considering the fact that the location of about 25% of them can be accurately estimated. 
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(FCN+heuristic) that exhibits significantly better performance. Moreover, we studied the impact of a variety of 

common image transformations and filters on the outputs of the image processing techniques, concluding that they 

are highly robust against most transformations. Based on the results of these evaluations, the final version of the image 

analysis module was designed and implemented as a web service, which was deployed in 1/3/2017, analyzing all the 

collected images. The deliverable also reports important statistics with respect to the results of the image analysis 

service over a period of about 2.5 months such as the percentage of usable sky images among the images that are 

collected daily in the countries of the hackAIR pilots. We find that that in both Germany and Norway a sufficient 

number of usable sky images are collected. In addition, the computational performance of the service was optimized 

and computationally intensive operations were transferred to the GPU. 

Finally, we presented an experimental line of work exploring the feasibility of performing air-quality estimations based 

on Twitter posts. More specifically, we collected Twitter data and ground truth air pollution measurements from five 

cities in the UK for a period of 3.5 months and developed air quality estimation models using text-mining and machine 

learning techniques. Despite, the encouraging results that we obtained we highlight that the approach is still under 

development and additional experimentation is required to conclude about the possibility of using it as an additional 

air quality estimation source. In particular, we found that a large amount of the predictive ability of the models is due 

to the use of actual air quality measurements from nearby cities while the contribution of Twitter features in accuracy 

is relatively small. Further experiments that include additional countries and smaller cities have to be conducted in 

order to validate the significance of the improvements offered by the inclusion of Twitter-based features to the 

accuracy of the models. 

Concluding, although we believe that to the objectives of tasks T3.1 and T3.2 have been successfully completed with 

the work reported in this deliverable and in D3.1, there are a number of extensions and improvements that are 

foreseen within Task 5.2 “Component Development and Integration” and Task 7.3 “hackAIR support services and 

methodology update” of WP7. More specifically, additional sources of air quality measurements could be integrated 

to the hackAIR platform, such as data from official organizations in countries that are not currently covered by OpenAQ 

or data from low-cost sensors offered by initiatives such as http://luftdaten.info/. What is more, the evaluation 

presented in section 3.1, highlighted that there is still room for improvement with respect to the accuracy of the sky 

detection and localization methods. In particular, the analysis showed that the presence of cirrus clouds is in many 

cases the reason why an image is considered unsuitable for air quality estimation. Even though in many cases it is 

difficult to decide whether an image is unsuitable for air quality estimation due to the presence of cirrus clouds even 

with a naked eye (see e.g. Figure 19), a possible direction for future work would be the development of a specialized 

concept detector that would automatically recognize and filter sky-depicting images where sky is covered by this type 

of clouds. Moreover, given the significant increase in the number of images that will need to be processed in case non-

geotagged Flickr images are included, mechanisms to increase the scalability of the image analysis module will have 

to be investigated. Finally, the possibility of deploying the Twitter-based air-quality prediction in a practical setting 

needs to be further investigated. Apart from those extensions, we also expect a number of incremental refinements 

and improvements to be required based on pilot feedback.   

http://luftdaten.info/
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7 Appendix 

7.1 Additional Results on Robustness against Image Transformations 
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Figure 43 - Scatterplots of R/G (left) and G/B (right) scores calculated from original (x axis) and transformed images (y axis). 

7.2 Additional Results on Twitter-based Air Quality Estimation 

Table 21 – Examples of London tweets classified as relevant by the AQ_Discussion classifier 

AQ_Discussion tweets 

RT @Jackie_News: Wandsworth, Kingston and Hounslow are some of the areas under a toxic “red 

alert” today http://t.co/o1pkytqhJM 

RT @ClientEarth: #Knightbridge has become the third monitor breach legal #airpollution limits. 

Support our fight for #clearnair… 

RT @LondonAir: High air pollution forecast valid from Thursday 19 January to end of Thursday 19 

January https://t.co/W3D5gD9fxO #airpollution 

RT @MayorofLondon: London’s dirty air is a public health crisis. I’m committed to tackling this. 

Read more about my plans here: https://t.c... 

@tony_olmstead @SenSanders no a hypocrite if no alternative. Do people campaigning against 

air pollution have to stop breathing? 

RT @ LondonAir: This pic shows PM2.5 particulate #airpollution building through this cold snap 

since Sat. Widespread Moderate, like… 

 

Table 22 – Examples of London tweets classified as relevant by the AQ_Sense classifier 

AQ_Sense tweets 

RT @RSLenvironment: AirPollution is a crisis that “plagues” the UK, particularly children, according 

to UN human rights expert http://t.c... 

Greenhouse Morning News is out! Top stories: EU ‘ready to fight’ for # climate & UK #airpollution 

crises… 

RT @GasNaturally: Another proof that #NatGas reduces #PowerGen CO2 #emissions when used 

instead of #Coal 

http://t.co/o1pkytqhJM
https://t.co/W3D5gD9fxO
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Our #future. EVs will help “goal to reduce greenhouse gas #emissions by 80-95% by 2050” 

https://t.co/L46Xm7VI29 

This ‘smog-eating’ city sculpture can combat London’s toxic pollution as effectively as 275 trees 

https://t.co/99FY7EyiSW 

RT @CleanSpaceLDN: Bad night's sleep? #Airpollution could be to blame, study finds 

https://t.co/MjYQiaVDB7 via @guardian 

 

Table 23 - Examples of London tweets classified as High by the AP_Severity classifier 

AP_Severity High 

RT @PlumeInLondon: High pollution (50) at 10PM. High for #London. Avoid physical activities if 

sensitive https://t.co/3LVRgps965 

London's air pollution is killing me. Coughs now sound like squeaky chew toy. #sendhelp 

#sendventolin 

RT @cargill_taxi: And the mayor of London tries to blame poor air quality on toxic air from German 

factories. You need to look a bit… 

@claireL23 The traffic, poor air quality, the light pollution, the lack of green space, the concrete 

jungle, the bu… https://t.co/JkXYWA16GM 

RT @SkyNews: THE GUARDIAN FRONT PAGE: "Toxic air risk to one in four London schools" 

#skypapers https://t.co/2c6ANlujep 

RT @MayorofLondon: London’s toxic air is a public health emergency. Here is what I’m doing about 

it https://t.co/YHw2CVepPI 

 

Table 24 - Examples of London tweets classified as Low by the AP_Severity classifier 

AP_Severity Low 

RT @DefraUKAir: Latest Wed 9am: Low air pollution measured across all regions of the UK. 

https://t.co/dDB6mTQz37 #ukair 

Always, if I were able to lie down, I would be laying on the grass right now looking at the beautiful 

sky whilst li… https://t.co/qAbMx6kgG1 

Air is OK near Sevenoaks - Greatness Park (Pollution Low : 1) 

The pollution is evil, but the London sky was oh so beautiful https://t.co/kWWPVAx7Io 

Feeling minor dirt in the air near Enfield - Bush Hill Park (Pollution Low : 2) 

LOW air pollution forecast for Central London on Fri 9th May. Health advice: 

https://t.co/fYVbZm2jd8 

 

Table 25 – Top-20 features selected using each feature selection metric. 

S&C Sonly Conly Conly_a 
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mean_PM10_nearby_1 active_hour mean_PM10_nearby_1 mean_PM10_nearby_1 

mean_PM10_nearby_4 mean_PM10_nearby_4 mean_PM10_nearby_2 mean_PM10_nearby_2 

mean_PM10_nearby_2 emissions mean_PM10_nearby_3 mean_PM10_nearby_3 

mean_PM10_nearby_3 active_day mean_PM10_nearby_4 mean_PM10_nearby_4 

emissions mean_PM10_nearby_3 high_future_2 high_future_2 

active_hour mean_PM10_nearby_1 aqs_future_2 aqs_future_2 

active_day mean_PM10_nearby_2 high_future_1 high_future_1 

airpollution aqd_future_2 aqs_future_1 rolling_mean_high_2 

aqs_future_2 aqd rolling_mean_high_2 rolling_mean_aqs_2 

high_future_2 aqd_1 rolling_mean_aqs_2 aqs_future_1 

high_future_1 aqd_2 rolling_mean_high_1 rolling_mean_high_3 

aqs_future_1 aqd_3 rolling_mean_high_3 rolling_mean_aqs_3 

high airpollution rolling_mean_aqs_3 rolling_mean_high_1 

aqs rolling_mean_aqd_1 rolling_mean_aqs_1 rolling_mean_aqs_1 

rolling_mean_high_1 tweetsno smog rolling_mean_high_4 

smog aqd_4 rolling_mean_low_3 rolling_mean_aqs_4 

high_1 rolling_mean_aqd_2 rolling_mean_low_2 smog 

rolling_mean_aqs_1 aqs_4 rolling_mean_low_4 rolling_mean_low_3 

low_future_1 high_4 high high 

low_1 rolling_mean_aqd_3 rolling_mean_high_4 aqs 

 

 


